मराठी

23 एक परिमेय संख्या है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`sqrt(2)/3` एक परिमेय संख्या है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन असत्य है। 

स्पष्टीकरण - 

यहाँ `sqrt(2)` एक अपरिमेय संख्या है और 3 एक परिमेय संख्या है, हम जानते हैं कि जब हम अपरिमेय संख्या को शून्येतर परिमेय संख्या से विभाजित करते हैं तो यह हमेशा एक अपरिमेय संख्या देगी।

shaalaa.com
अपरिमेय संख्याओं का पुनर्भ्रमण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संख्या पद्धतियाँ - प्रश्नावली 1.2 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 1 संख्या पद्धतियाँ
प्रश्नावली 1.2 | Q 3. (i) | पृष्ठ ६

संबंधित प्रश्‍न

सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:

`6 + sqrt2`


नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।

प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।


क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।


बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:

`sqrt225`


सिद्ध कीजिए कि `sqrt3` + `sqrt5` एक अपरिमेय संख्या है।


एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :


निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?


`sqrt(2)` और `sqrt(3)` के बीच एक परिमेय संख्या है :


`p/q` के रूप में 1.999... का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0, होगा :


कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×