Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`6 + sqrt2`
उत्तर १
∴ हम दो सह-अभाज्य पूर्णांक a और b पा सकते हैं जैसे कि `6 + sqrt2 = a/b`, जहाँ b ≠ 0
∴ `a/b - 6 = sqrt2`
या `sqrt2 = (a/b - 6)`
= `(a - 6b)/b`
(1) से, `sqrt2` एक परिमेय संख्या है, जो इस तथ्य का खंडन करती है कि `sqrt2` एक अपरिमेय संख्या है।
∴ हमारा अनुमान गलत है।
= `6 sqrt2` एक अपरिमेय संख्या है।
उत्तर २
इसके विपरीत मान लीजिए कि `6 + sqrt2` एक परिमेय संख्या हैं।
हम किसी भी परिमेय संख्या को `p/q` के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q ≠ 0 है।
इसलिए,
`p/q = 6 + sqrt2`
और p तथा q को उभयनिष्ठ गुणनखंड से विभाजित कर एक सह-अभाज्य संख्या a तथा b प्राप्त कर सकते हैं।
अतः `6 + sqrt2 = a/b`
या `sqrt2 = a/b - 6`
या `sqrt2 = (a - 6b)/b`
चूँकि a तथा b पूर्णांक है और 6 भी पूर्णांक है।
इसलिए `(a - 6b)/b` एक परिमेय संख्या है जबकि वाया पक्ष `sqrt2` एक अपरिमेय संख्या है।
इससे एक विरोधाभासी परिणाम प्राप्त होता है कि `sqrt2` परिमेय संख्या है।
ऐसा विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि `6 + sqrt2` एक परिमेय संख्या है।
अतः `6 + sqrt2` एक अपरिमेय संख्या है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।
दिखाइए कि संख्या रेखा पर `sqrt5` को किस प्रकार निरूपित किया जा सकता है।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
`sqrt225`
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
0.3796
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
संख्या `sqrt(2)` का दशमलव प्रसार है :
`2sqrt(3) + sqrt(3)` बराबर है :
`sqrt(2)/3` एक परिमेय संख्या है।