Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `3 + 2sqrt5` एक अपरिमेय संख्या है।
उत्तर १
यदि संभव हो तो a = 3 + 2`sqrt5` को एक परिमेय संख्या मान लें।
हम दो सह-अभाज्य पूर्णांक a और b इस प्रकार ज्ञात कर सकते हैं कि `3 + 2sqrt5 = a/b,` जहाँ b ≠ 0
`(a - 3b)/b`
= `2sqrt5`
= `(a - 3b)/(2b)`
= `sqrt5`
∵ a और b पूर्णांक हैं,
∴ `(a - 3b)/(2b)`
= `"पूर्णांक - 3 (पूर्णांक)"/"2 पूर्णांक"`
= `(a - 3b)/ (2b)` परिमेय है।
= (1) से, `sqrt 5` परिमेय है।
= लेकिन यह इस तथ्य का खंडन करता है कि `sqrt5` परिमेय है।
∴ हमारा अनुमान गलत है।
अतः `3 + 2sqrt5` अपरिमेय है।
उत्तर २
इसके विपरीत मान लीजिए कि `3 + 2sqrt5` एक परिमेय संख्या है।
हम किसी भी परिमेय संख्या को `a/b` के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और b ≠ 0 है।
इसलिए,
`a/b = 3 + 2sqrt5`
और a तथा b को उभयनिष्ठ गुणनखंड से विभाजित कर एक सह-अभाज्य संख्या a तथा b प्राप्त कर सकते हैं |
अतः `3 + 2sqrt5 = a/b`
या `2sqrt5 = a/b - 3`
या `2sqrt5 = (a - 3b)/b`
या `sqrt5 = (a - 3b)/(2b)`
चूँकि a तथा b पूर्णांक है और 2 तथा 3 भी पूर्णांक है।
इसलिए `(a - 3b)/(2b)` एक परिमेय संख्या है जबकि वाया पक्ष `sqrt5` एक अपरिमेय संख्या है।
इससे एक विरोधाभासी परिणाम प्राप्त होता है कि `sqrt5`
परिमेय संख्या है।
ऐसा विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि `3 + 2sqrt5` एक परिमेय संख्या है।
अतः `3 + 2sqrt5` एक अपरिमेय संख्या है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
संख्या रेखा का प्रत्येक बिन्दु `sqrtm` के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
7.478478
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`p/q` के रूप में 1.999... का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0, होगा :
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।