Advertisements
Advertisements
प्रश्न
4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।
उत्तर
चरण 1
एक रेखाखंड AB = 4 सेमी खींचिए। बिंदु A को केंद्र मानकर 5 सेमी त्रिज्या का एक चाप खींचिए। इसी प्रकार, बिंदु B को केंद्र मानकर 6 सेमी त्रिज्या का एक चाप खींचिए। ये चाप एक दूसरे को बिंदु C पर काटेंगे। अब, AC = 5 सेमी और BC = 6 सेमी और ΔABC अभीष्ट त्रिभुज है।
चरण 2
शीर्ष C के विपरीत दिशा में रेखा AB के साथ न्यून कोण बनाते हुए एक किरण AX खींचिए।
चरण 3
लाइन AX पर 3 बिंदु A1, A2, A3 (जैसा कि 2 और 3 के बीच बड़ा है) का पता लगाएँ जैसे कि AA1 = A1A2 = A2A3
चरण 4
BA3 को मिलाइए और A2 से होकर BA3 के समानांतर एक रेखा खींचिए जो AB को बिंदु B पर काटती है।
चरण 5
रेखा BC के समांतर B' से होकर एक रेखा खींचिए जो AC को C' पर प्रतिच्छेद करे।
ΔABC' अभीष्ट त्रिभुज है।
औचित्य
निर्माण को सिद्ध करके उचित ठहराया जा सकता है कि
`AB' = 2/3AB, B'C' = 2/3BC, AC' = 2/3 AC`
निर्माण से, हमारे पास B'C' || BC पूर्व
∴ ∠AB'C'= ∠ABC (सभी तरीके से)
In ΔAB'C' and ΔABC,
∠AB'C' = ∠ABC (ऊपर सिद्ध)
∠B'AC' = ∠BAC (ऊपर सिद्ध)
∴ ΔAB'C' ~ ΔABC (AA समानता मानदंड)
`=> (AB')/(AB) = (B'C')/(BC) = (AC')/(AC) ....(1)`
In ΔAA2B' and ΔAA3B,
∠A2AB' = ∠A3AB (सामान्य)
∠AA2B' = ∠AA3B (सभी तरीके से)
∴ ΔAA2B' ∼ ΔAA3B (AA समानता मानदंड)
`=> (AB')/(AB) = (`
`=> (AB')/(AB) = 2/3 ....(2)`
समीकरण (1) और (2) से, हम प्राप्त करते हैं
`(AB')/(AB) = (B'C')/(BC) = (AC')/(AC) = 2/3`
`=>AB' = 2/3(AB), B'C' = 2/3(BC), AC' = 2/3(AC)`
यह निर्माण को सही ठहराता है।
APPEARS IN
संबंधित प्रश्न
एक त्रिभुज ABC बनाइए जिसमें BC = 6 सेमी, AB = 5 सेमी और ∠ABC = 60 हो। फिर एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ ΔABC की संगत भुजाओं की `3/4` गुनी हों। औचित्य बताइए
एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए
एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।
एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।
एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।
एक दिये हुए त्रिभुज के समरूप एक ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `7/3` हों, BC से एक न्यून कोण बनाती हुई एक किरण BX खींचिए, ताकि X भुजा BC के सापेक्ष A के विपरीत ओर स्थित हो। BX पर समान दूरियों पर बिंदु B1, B2, ...., B7, अंकित कीजिए, B3 को C से मिलाइए और फिर B3C के समांतर एक रेखाखंड B6C' खींचा जाता है, जबकि बिंदु C' बढ़ाई गयी भुजा BC पर स्थित है। अंत में, AC के समांतर रेखाखंड A'C' खींचा जाता है।
दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।
एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं।