मराठी

A balloon, which always remains spherical, has a variable diameter 32(2x+ 1) Find the rate of change of its volume with respect to x. - Mathematics

Advertisements
Advertisements

प्रश्न

A balloon, which always remains spherical, has a variable diameter  `3/2 (2x +   1)` Find the rate of change of its volume with respect to x.

बेरीज

उत्तर

Diameter of the balloon, `d = 3/2 (2x + 1)`

∴ The radius of the ballon, `r = d/2`

`= 1/2 {3/2 (2x + 1)} = 3/4 (2x + 1)`

So, the volume V of the balloon,

`V = 4/3 pi  "(radius)"^3 = 4/3 pi {3/4 (2x + 1)}^3`

`= (9pi)/16 (2x + 1)^3`           ....(i)

Differentiating (i) w.r.t. x, we get

`(dV)/dx = (9pi)/16 xx 3 (2x + 1)^2 xx2`

`= (27 pi)/8 (2x+ 1)^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.1 [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.1 | Q 13 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?


A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.


The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


The side of a square sheet is increasing at the rate of 4 cm per minute. At what rate is the area increasing when the side is 8 cm long?


A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/sec. How fast is the length of his shadow increasing when he is 1 m away from the pole?


A man 2 metres high walks at a uniform speed of 6 km/h away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases ?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


Find the point on the curve y2 = 8x for which the abscissa and ordinate change at the same rate ?


The volume of a cube is increasing at the rate of 9 cm3/sec. How fast is the surface area increasing when the length of an edge is 10 cm?


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is


A cylindrical vessel of radius 0.5 m is filled with oil at the rate of 0.25 π m3/minute. The rate at which the surface of the oil is rising, is


The radius of a sphere is increasing at the rate of 0.2 cm/sec. The rate at which the volume of the sphere increase when radius is 15 cm, is


The distance moved by a particle travelling in straight line in t seconds is given by s = 45t + 11t2 − t3. The time taken by the particle to come to rest is


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


If the rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


If s = t3 − 4t2 + 5 describes the motion of a particle, then its velocity when the acceleration vanishes, is


A ladder 13 m long is leaning against a vertical wall. The bottom of the ladder is dragged away from the wall along the ground at the rate of 2 cm/sec. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall.


A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and L = 200 (10 – t)2. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is ______.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase in the surface area (in cm2/min.) of the balloon when its diameter is 14 cm, is ______.


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


If equal sides of an isosceles triangle with fixed base 10 cm are increasing at the rate of 4 cm/sec, how fast is the area of triangle increasing at an instant when all sides become equal?


An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast will the volume of the cube increase if the edge is 5 cm long? 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×