मराठी

A Battery of Emf 12 V and Internal Resistance 2 Ω is Connected to a 4 Ω Resistor as Shown in the Figure. (A) Show that a Voltmeter When Placed Across the Cell and Across the Resistor, in Turn, Gives the Same Reading. - Physics

Advertisements
Advertisements

प्रश्न

A battery of emf 12 V and internal resistance 2 Ω is connected to a 4 Ω resistor as shown in the figure.

(a) Show that a voltmeter when placed across the cell and across the resistor, in turn, gives the same reading.

(b) To record the voltage and the current in the circuit, why is voltmeter placed in parallel and ammeter in series in the circuit?

उत्तर

(i) According to the definition of terminal potential difference,

E = V + Ir

`=>V=E-Ir`

E = 12 V, r = 2 Ω

V = 12 – 2I

When the voltmeter is connected across the cell.

`I=12/(4+2)=2A`

V1 = 12 – 2 (2) = 8 V

When the voltmeter is connected across the resistor.

V2 = IR

= 2 × 4 = 8 V

V1 = V2

Hence, from the above relation we can see that when voltmeter placed across the cell and across the resistor, gives the same reading

(ii) Voltmeter has very high resistance to ensure that it's connection does not alter the flow of current in the circuit. We connect it in parallel and we also know that current chooses only the low resistance path. Hence, it is connected in parallel to the load across which potential difference is to be measured.

Ammeter measures value of current flowing through the circuit so it should be connected in the series. Ammeter has very low resistance to ensure that all the current flows through it. Thus, it gives a correct reading of the current when connected in series.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 2 C

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Six lead-acid types of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. What are the current drawn from the supply and its terminal voltage?


Nichrome and copper wires of same length and same radius are connected in series. Current I is passed through them. Which wire gets heated up more? Justify your answer.


A long straight current carrying wire passes normally through the centre of circular loop. If the current through the wire increases, will there be an induced emf in the loop? Justify.


A rectangular conductor LMNO is placed in a uniform magnetic field of 0.5 T. The field is directed perpendicular to the plane of the conductor. When the arm MN of length of 20 cm is moved towards left with a velocity of 10 ms−1, calculate the emf induced in the arm. Given the resistance of the arm to be 5 Ω (assuming that other arms are of negligible resistance) find the value of the current in the arm.


Can the potential difference across a battery be greater than its emf?


A coil of resistance 100 Ω is connected across a battery of emf 6.0 V. Assume that the heat developed in the coil is used to raise its temperature. If the heat capacity of the coil is 4.0 J K−1, how long will it take to raise the temperature of the coil by 15°C?


An energy source will supply a constant current into the load if its internal resistance is ______.

A straight line plot showing the terminal potential difference (V) of a cell as a function of current (I) drawn from it, is shown in the figure. The internal resistance of the cell would be then ______.


The internal resistance of a cell is the resistance of ______


Three cells, each of emf E but internal resistances 2r, 3r and 6r are connected in parallel across a resistor R.

Obtain expressions for (i) current flowing in the circuit, and (ii) the terminal potential differences across the equivalent cell.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×