मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Block of Mass 250 G is Kept on a Vertical Spring of Spring Constant 100 N/M Fixed Below. the Spring is Now Compressed 10 Cm Shorter Its Natural Length and the System is Released from this Position - Physics

Advertisements
Advertisements

प्रश्न

A block of mass 250 g is kept on a vertical spring of spring constant 100 N/m fixed from below. The spring is now compressed 10 cm shorter than its natural length and the system is released from this position. How high does the block rise ? Take g = 10 m/s2.  

 
संख्यात्मक

उत्तर

\[\text{Given, }\]
\[\text{ Mass of the block, m = 250 g = 0 . 25 kg } , \]
\[\text{ Spring constant, k = 100 N/m }\]
\[\text{ Compression in the string, x = 10 cm = 0 . 1 m}, \]
\[\text{ Acceleration due to gravity, g = 10 m/ s}^2\]

Let the block rises to height h.
Applying law of  conservation of energy which says that the total energy should always remain conserved.

\[\frac{1}{2}\text{kx}^2 = \text{mgh}\]
\[ \Rightarrow h = \frac{1}{2}\left( \frac{\text{kx}^2}{\text{mg}} \right)\]
\[ = \frac{100 \times 0 . 01}{2 \times \left( 0 . 250 \right) \times 10}\]
\[ = 0 . 2 \text{m = 20 cm}\]

So, the block rises to 20 cm.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Work and Energy - Exercise [पृष्ठ १३५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 8 Work and Energy
Exercise | Q 42 | पृष्ठ १३५

संबंधित प्रश्‍न

Is work-energy theorem valid in non-inertial frames?

 

A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. what are the initial and final kinetic energies of the ball?  


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Calculate the kinetic energy of Griffith-Joyner at her full speed. 


A water pump lifts water from 10 m below the ground. Water is pumped at a rate of 30 kg/minute with negligible velocity. Calculate the minimum horsepower that the engine should have to do this.

 

In a factory, 2000 kg of metal needs to be lifted by an engine through a distance of 12 m in 1 minute. Find the minimum horsepower of the engine to be used.

 

A scooter company gives the following specifications about its product:
Weight of the scooter − 95 kg
Maximum speed − 60 km/h
Maximum engine power − 3⋅5 hp
Pick up time to get the maximum speed − 5 s
Check the validity of these specifications.


A block of mass 5 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below, so that it acquires an upward speed of 2 m/s. How high will it rise? Take g = 10 m/s2


A simple pendulum consists of a 50 cm long string connected to a 100 g ball. The ball is pulled aside so that the string makes an angle of 37° with the vertical and is then released. Find the tension in the string when the bob is at its lowest position. 


Following figure following shows a smooth track, a part of which is a circle of radius R. A block of mass m is pushed against a spring of spring constant k fixed at the left end and is then released. Find the initial compression of the spring so that the block presses the track with a force mg when it reaches the point P, where the radius of the track is horizontal.


The bob of a stationary pendulum is given a sharp hit to impart it a horizontal speed of \[\sqrt{3 gl}\] . Find the angle rotated by the string before it becomes slack.


A heavy particle is suspended by a 1⋅5 m long string. It is given a horizontal velocity of \[\sqrt{57} \text{m/s}\] (a) Find the angle made by the string with the upward vertical when it becomes slack. (b) Find the speed of the particle at this instant. (c) Find the maximum height reached by the particle over the point of suspension. Take g = 10 m/s2

 

A simple pendulum of length L with a bob of mass m is deflected from its rest position by an angle θ and released (following figure). The string hits a peg which is fixed at a distance x below the point of suspension and the bob starts going in a circle centred at the peg. (a) Assuming that initially the bob has a height less than the peg, show that the maximum height reached by the bob equals its  initial height. (b) If the pendulum is released with \[\theta = 90^\circ \text{ and x = L}/2\] , find the maximum height reached by the bob above its lowest position before the string becomes slack. (c) Find the minimum value of x/L for which the bob goes in a complete circle about the peg when the pendulum is released from \[\theta = 90^\circ \]


A particle slides on the surface of a fixed smooth sphere starting from the topmost point. Find the angle rotated by the radius through the particle, when it leaves contact with the sphere.

 

A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the gravitational potential energy of the chain with reference level at the centre of the sphere.


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Suppose the chain is released and slides down the sphere. Find the kinetic energy of the chain, when it has slid through an angle θ.


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the tangential acceleration \[\frac{d\nu}{dt}\] of the chain when the chain starts sliding down.

 

An electron and a proton are moving under the influence of mutual forces. In calculating the change in the kinetic energy of the system during motion, one ignores the magnetic force of one on another. This is because ______.


A bullet of mass m fired at 30° to the horizontal leaves the barrel of the gun with a velocity v. The bullet hits a soft target at a height h above the ground while it is moving downward and emerges out with half the kinetic energy it had before hitting the target.

Which of the following statements are correct in respect of bullet after it emerges out of the target?

  1. The velocity of the bullet will be reduced to half its initial value.
  2. The velocity of the bullet will be more than half of its earlier velocity.
  3. The bullet will continue to move along the same parabolic path.
  4. The bullet will move in a different parabolic path.
  5. The bullet will fall vertically downward after hitting the target.
  6. The internal energy of the particles of the target will increase.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×