मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Heavy Particle is Suspended by a 1⋅5 M Long String. It is Given a Horizontal Velocity of √ 57 M/S (A) Find the Angle Made by the String with the Upward Vertical When It Becomes Slack. - Physics

Advertisements
Advertisements

प्रश्न

A heavy particle is suspended by a 1⋅5 m long string. It is given a horizontal velocity of \[\sqrt{57} \text{m/s}\] (a) Find the angle made by the string with the upward vertical when it becomes slack. (b) Find the speed of the particle at this instant. (c) Find the maximum height reached by the particle over the point of suspension. Take g = 10 m/s2

 
संख्यात्मक

उत्तर

\[\text{ Given }: \]
\[\text{ Length of the string, L = 1 . 5 m}\]
\[\text{ Initial speed of the particle, u } = \sqrt{57} \text{ m/s }\]
\[(\text{a}) \text{ mg } \cos \theta = \frac{\text{m}\nu^2}{\text{L}}\]
\[ \nu^2 = \text{Lg} \cos \theta . . . (\text{i})\]

Change in K.E. = Work done

\[\frac{1}{2}\text{m}\nu^2 - \frac{1}{2}\text{mu}^2 = - \text{mgh}\]

\[ \Rightarrow \nu^2 - 57 = - 2 \times 1 . 5 \text{g} \left( 1 + \cos \theta \right) \]

\[ \Rightarrow \nu^2 = 57 - 3\text{g }\left( 1 + \cos \theta \right) . . . (\text{ii})\]

Putting the value of \[\nu\]  from equation (i),

\[15 \cos \theta = 57 - 3g \left( 1 + \cos \theta \right)\]
\[ \Rightarrow 15 \cos \theta = 57 - 30 - 30 \cos \theta\]
\[ \Rightarrow 45 \theta = 27\]
\[ \Rightarrow \cos \theta = \frac{3}{5}\]
\[ \Rightarrow \theta = \cos^{- 1} \frac{3}{5} = 53^\circ\]

(b) From equation (ii), 

\[\nu = \sqrt{57 - 3g \left( 1 + \cos \theta \right)}\]
\[ = \sqrt{9} = 3 \text{ m/s}\]

(c) As the string becomes slack at point P, the particle will start executing a projectile motion.
\[\text{ h = OF + FC} \]
\[ = 1 . 5 \cos \theta + \frac{\text{u}^2 \sin^2 \theta}{2 \text{g}}\]
\[ = \left( 1 . 5 \right) \times \frac{3}{5} + \frac{9 \times \left( 0 . 8 \right)^2}{2 \times 10}\]
\[ = 1 . 2 \text{m}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Work and Energy - Exercise [पृष्ठ १३६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 8 Work and Energy
Exercise | Q 57 | पृष्ठ १३६

संबंधित प्रश्‍न

Is work-energy theorem valid in non-inertial frames?

 

A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. What is the work done by the kinetic friction? 


Consider the situation of the previous question from a frame moving with a speed v0 parallel to the initial velocity of the block. (a) What are the initial and final kinetic energies? (b) What is the work done by the kinetic friction? 

 

In a factory, 2000 kg of metal needs to be lifted by an engine through a distance of 12 m in 1 minute. Find the minimum horsepower of the engine to be used.

 

A scooter company gives the following specifications about its product:
Weight of the scooter − 95 kg
Maximum speed − 60 km/h
Maximum engine power − 3⋅5 hp
Pick up time to get the maximum speed − 5 s
Check the validity of these specifications.


A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


Following figure following shows a smooth track, a part of which is a circle of radius R. A block of mass m is pushed against a spring of spring constant k fixed at the left end and is then released. Find the initial compression of the spring so that the block presses the track with a force mg when it reaches the point P, where the radius of the track is horizontal.


The bob of a stationary pendulum is given a sharp hit to impart it a horizontal speed of \[\sqrt{3 gl}\] . Find the angle rotated by the string before it becomes slack.


A particle of mass m is kept on the top of a smooth sphere of radius R. It is given a sharp impulse which imparts it a horizontal speed ν. (a) Find the normal force between the sphere and the particle just after the impulse. (b) What should be the minimum value of ν for which the particle does not slip on the sphere? (c) Assuming the velocity ν to be half the minimum calculated in part, (b) find the angle made by the radius through the particle with the vertical when it leaves the sphere.


Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Assuming that the projection-speed is \[\nu_0\] and that the block does not lose contact with the track before reaching its top, find the force acting on it when it reaches the top. 


Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom.Assuming that the projection-speed is only slightly greater than \[\nu_0\] , where will the block lose contact with the track?


A smooth sphere of radius R is made to translate in a straight line with a constant acceleration a. A particle kept on the top of the sphere is released at zero velocity with respect to the sphere. Find the speed of the particle with respect to the sphere as a function of the angle θ it slides. 


An electron and a proton are moving under the influence of mutual forces. In calculating the change in the kinetic energy of the system during motion, one ignores the magnetic force of one on another. This is because ______.


A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top.

  1. Work done by all forces on man is equal to the rise in potential energy mgL.
  2. Work done by all forces on man is zero.
  3. Work done by the gravitational force on man is mgL.
  4. The reaction force from a step does not do work because the point of application of the force does not move while the force exists.

Two bodies of unequal mass are moving in the same direction with equal kinetic energy. The two bodies are brought to rest by applying retarding force of same magnitude. How would the distance moved by them before coming to rest compare?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×