मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Particle of Mass M is Kept on the Top of a Smooth Sphere of Radius R. It is Given a Sharp Impulse Which Imparts It a Horizontal Speed ν . - Physics

Advertisements
Advertisements

प्रश्न

A particle of mass m is kept on the top of a smooth sphere of radius R. It is given a sharp impulse which imparts it a horizontal speed ν. (a) Find the normal force between the sphere and the particle just after the impulse. (b) What should be the minimum value of ν for which the particle does not slip on the sphere? (c) Assuming the velocity ν to be half the minimum calculated in part, (b) find the angle made by the radius through the particle with the vertical when it leaves the sphere.

संख्यात्मक

उत्तर

(a) Radius = R
Horizontal speed = \[v\] 

From the above diagram:
Normal force,

\[\text{ N = mg }- \frac{\text{ m }v^2}{\text{ R}}\]
(b) When the particle is given maximum velocity, so that the centrifugal force balances the weight, the particle does not slip on the sphere.

\[\text{So },\frac{\text{m}\nu^2}{R} = \text{mg}\]

\[ \Rightarrow \nu = \sqrt{\text{gR}}\]

(c) If the body is given velocity \[\nu_1\] at the top such that,

\[\nu_1 = \frac{\sqrt{gR}}{2}\]

\[ \nu_1^2 = \frac{gR}{4}\]

Let the velocity be \[\nu_2\]  when it loses contact with the surface, as shown below.

So,

\[\frac{\text{m}\nu_2^2}{R} = \text{mg} \cos \theta\]

\[ \Rightarrow \nu_2^2 = \text{Rg} \cos \theta . . . (\text{i})\]

\[\text{ Again,} \left( \frac{1}{2} \right) \text{m} \nu_2^2 - \left( \frac{1}{2} \right) m \nu_1^2 \]
\[ = \text{ mgR }\left( 1 - \cos \theta \right)\]
\[ \Rightarrow \nu_2^2 = \nu_1^2 + 2\text{ gR} \left( 1 - \cos \theta \right) . . . (ii)\]

From equations (i) and (ii),

\[Rg \cos \theta = \left( \frac{Rg}{4} \right) + 2gR \left( 1 - \cos \theta \right)\]
\[ \Rightarrow \cos \theta = \left( \frac{1}{4} + 2 - 2 \cos \theta \right)\]
\[ \Rightarrow 3 \cos \theta = \left( \frac{9}{4} \right)\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{3}{4} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Work and Energy - Exercise [पृष्ठ १३६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 8 Work and Energy
Exercise | Q 61 | पृष्ठ १३६

संबंधित प्रश्‍न

In Figure (i) the man walks 2 m carrying a mass of 15 kg on his hands. In Figure (ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?


Is work-energy theorem valid in non-inertial frames?

 

A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. What is the work done by the kinetic friction? 


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg.  What power Griffith-Joyner had to exert to maintain uniform speed?


An unruly demonstrator lifts a stone of mass 200 g from the ground and throws it at his opponent. At the time of projection, the stone is 150 cm above the ground and has a speed of 3 m/s. Calculate the work done by the demonstrator during the process. If it takes one second for the demonstrator to lift the stone and throw it, what horsepower does he use? 


A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


A small block of mass 200 g is kept at the top of a frictionless incline which is 10 m long and 3⋅2 m high. How much work was required (a) to lift the block from the ground and put it an the top, (b) to slide the block up the incline? What will be the speed of the block when it reaches the ground if (c) it falls off the incline and drops vertically to the ground (d) it slides down the incline? Take g = 10 m/s2


A block weighing 10 N travels down a smooth curved track AB joined to a rough horizontal surface (In the following figure). The rough surface has a friction coefficient of 0⋅20 with the block. If the block starts slipping on the track from a point 1⋅0 m above the horizontal surface, how far will it move on the rough surface?


A block of mass 5 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below, so that it acquires an upward speed of 2 m/s. How high will it rise? Take g = 10 m/s2


A block of mass 250 g is kept on a vertical spring of spring constant 100 N/m fixed from below. The spring is now compressed 10 cm shorter than its natural length and the system is released from this position. How high does the block rise ? Take g = 10 m/s2.  

 

The bob of a pendulum at rest is given a sharp hit to impart a horizontal velocity  \[\sqrt{10 \text{ gl }}\], where l is the length of the pendulum. Find the tension in the string when (a) the string is horizontal, (b) the bob is at its highest point and (c) the string makes an angle of 60° with the upward vertical. 


A simple pendulum consists of a 50 cm long string connected to a 100 g ball. The ball is pulled aside so that the string makes an angle of 37° with the vertical and is then released. Find the tension in the string when the bob is at its lowest position. 


The bob of a stationary pendulum is given a sharp hit to impart it a horizontal speed of \[\sqrt{3 gl}\] . Find the angle rotated by the string before it becomes slack.


A particle slides on the surface of a fixed smooth sphere starting from the topmost point. Find the angle rotated by the radius through the particle, when it leaves contact with the sphere.

 

A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the tangential acceleration \[\frac{d\nu}{dt}\] of the chain when the chain starts sliding down.

 

A man, of mass m, standing at the bottom of the staircase, of height L climbs it and stands at its top.

  1. Work done by all forces on man is equal to the rise in potential energy mgL.
  2. Work done by all forces on man is zero.
  3. Work done by the gravitational force on man is mgL.
  4. The reaction force from a step does not do work because the point of application of the force does not move while the force exists.

A raindrop of mass 1.00 g falling from a height of 1 km hits the ground with a speed of 50 ms–1. Calculate 

  1. the loss of P.E. of the drop.
  2. the gain in K.E. of the drop.
  3. Is the gain in K.E. equal to a loss of P.E.? If not why.

Take g = 10 ms–2


A rocket accelerates straight up by ejecting gas downwards. In a small time interval ∆t, it ejects a gas of mass ∆m at a relative speed u. Calculate KE of the entire system at t + ∆t and t and show that the device that ejects gas does work = `(1/2)∆m u^2` in this time interval (neglect gravity).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×