मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Smooth Sphere of Radius R is Made to Translate in a Straight Line with a Constant Acceleration A. a Particle Kept on the Top of the Sphere is Released at Zero Velocity with Respect to the Sphere - Physics

Advertisements
Advertisements

प्रश्न

A smooth sphere of radius R is made to translate in a straight line with a constant acceleration a. A particle kept on the top of the sphere is released at zero velocity with respect to the sphere. Find the speed of the particle with respect to the sphere as a function of the angle θ it slides. 

संख्यात्मक

उत्तर

Suppose the sphere moves to the left with acceleration 'a'
Let m be the mass of the particle.
The particle 'm' will also experience inertia due to acceleration 'a' as it is in the sphere. It will also experience the tangential inertia force

\[\left[ \text{m }\left( \frac{d\nu}{dt} \right) \right]\]  and centrifugal force \[\left( \frac{m \nu^2}{R} \right)\] .

From the diagram,
\[m\frac{d\nu}{dt} = \text{ ma } \cos \theta + \text{ mg } \sin \theta\]
\[\Rightarrow \text{ m }\nu\frac{d\nu}{dt} = \text{ma} \cdot \cos \theta \left( R\frac{d\theta}{dt} \right) + \text{ mg } \sin \theta \left( R\frac{d\theta}{dt} \right) \left( \text{ because,} \nu = R\frac{d\theta}{dt} \right)\]
\[ \Rightarrow \nu \text{ d}\nu = a \text{ R } \cos \theta \text{ d }\theta + \text{ gR } \sin \theta \text{ d }\theta\]
Integrating both sides, we get:
\[\frac{\nu^2}{2} = \text{ aR } \sin \theta - \text{ gR } \cos \theta + C\]
Given:
\[\theta = 0, \nu = 0\] 
So,
\[\text{ C = gR }\]
\[\Rightarrow \frac{\nu^2}{2} = \text{ aR } \sin \theta - \text{ gR } \cos \theta + \text{ gR }\]
\[ \Rightarrow \nu^2 = 2\text{ R } \left( a \sin \theta + g - g \cos \theta \right)\]
\[ \Rightarrow \nu = \left[ 2\text{ R }\left( a \sin \theta + g - g \cos \theta \right) \right]^{1/2}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Work and Energy - Exercise [पृष्ठ १३७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 8 Work and Energy
Exercise | Q 64 | पृष्ठ १३७

संबंधित प्रश्‍न

A ball is given a speed v on a rough horizontal surface. The ball travels through a distance l on the surface and stops. What is the work done by the kinetic friction? 


Consider the situation of the previous question from a frame moving with a speed v0 parallel to the initial velocity of the block. (a) What are the initial and final kinetic energies? (b) What is the work done by the kinetic friction? 

 

The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Calculate the kinetic energy of Griffith-Joyner at her full speed. 


The US athlete Florence Griffith-Joyner won the 100 m sprint gold medal at Seoul Olympics in 1988, setting a new Olympic record of 10⋅54 s. Assume that she achieved her maximum speed in a very short time and then ran the race with that speed till she crossed the line. Take her mass to be 50 kg. Assuming that the track, wind etc. offered an average resistance of one-tenth of her weight, calculate the work done by the resistance during the run. 


A water pump lifts water from 10 m below the ground. Water is pumped at a rate of 30 kg/minute with negligible velocity. Calculate the minimum horsepower that the engine should have to do this.

 

An unruly demonstrator lifts a stone of mass 200 g from the ground and throws it at his opponent. At the time of projection, the stone is 150 cm above the ground and has a speed of 3 m/s. Calculate the work done by the demonstrator during the process. If it takes one second for the demonstrator to lift the stone and throw it, what horsepower does he use? 


A scooter company gives the following specifications about its product:
Weight of the scooter − 95 kg
Maximum speed − 60 km/h
Maximum engine power − 3⋅5 hp
Pick up time to get the maximum speed − 5 s
Check the validity of these specifications.


A block of mass 30 kg is being brought down by a chain. If the block acquires a speed of 40 cm/s in dropping down 2 m, find the work done by the chain during the process.

 

Consider the situation shown in the following figure. The system is released from rest and the block of mass 1 kg is found to have a speed 0⋅3 m/s after it has descended a distance of 1 m. Find the coefficient of kinetic friction between the block and the table.


A block of mass 100 g is moved with a speed of 5⋅0 m/s at the highest point in a closed circular tube of radius 10 cm kept in a vertical plane. The cross-section of the tube is such that the block just fits in it. The block makes several oscillations inside the tube and finally stops at the lowest point. Find the work done by the tube on the block during the process.


A small block of mass 200 g is kept at the top of a frictionless incline which is 10 m long and 3⋅2 m high. How much work was required (a) to lift the block from the ground and put it an the top, (b) to slide the block up the incline? What will be the speed of the block when it reaches the ground if (c) it falls off the incline and drops vertically to the ground (d) it slides down the incline? Take g = 10 m/s2


Following figure following shows a smooth track, a part of which is a circle of radius R. A block of mass m is pushed against a spring of spring constant k fixed at the left end and is then released. Find the initial compression of the spring so that the block presses the track with a force mg when it reaches the point P, where the radius of the track is horizontal.


A particle of mass m is kept on the top of a smooth sphere of radius R. It is given a sharp impulse which imparts it a horizontal speed ν. (a) Find the normal force between the sphere and the particle just after the impulse. (b) What should be the minimum value of ν for which the particle does not slip on the sphere? (c) Assuming the velocity ν to be half the minimum calculated in part, (b) find the angle made by the radius through the particle with the vertical when it leaves the sphere.


Figure ( following ) shows a smooth track which consists of a straight inclined part of length l joining smoothly with the circular part. A particle of mass m is projected up the incline from its bottom. Assuming that the projection-speed is \[\nu_0\] and that the block does not lose contact with the track before reaching its top, find the force acting on it when it reaches the top. 


A chain of length l and mass m lies on the surface of a smooth sphere of radius R > l with one end tied to the top of the sphere.  Find the tangential acceleration \[\frac{d\nu}{dt}\] of the chain when the chain starts sliding down.

 

Two bodies of unequal mass are moving in the same direction with equal kinetic energy. The two bodies are brought to rest by applying retarding force of same magnitude. How would the distance moved by them before coming to rest compare?


Suppose the average mass of raindrops is 3.0 × 10–5 kg and their average terminal velocity 9 ms–1. Calculate the energy transferred by rain to each square metre of the surface at a place which receives 100 cm of rain in a year.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×