Advertisements
Advertisements
प्रश्न
A body weighs 5.6 kg wt on the surface of the Earth. How much will be its weight on a planet whose mass is 7 times the mass of the Earth and radius twice that of the Earth’s radius?
उत्तर
Given:
- Force/weight of the body on earth = 5.6 kg wt
- Mass of the planet = 7 × Mass of Earth
- Radius of the planet = 2 times Radius of the Earth
To find: Weight of the body on the surface of the planet
Calculation:
Let the mass of Earth be 'm' kg.
Let the distance between the two bodies be 'r' m.
F = G`("m" " m"_2)/"r"^2` ...(i)
Force of Gravitation between the two bodies when mass of Earth is 7 times and the distance is doubled.
F' = G`(7 "m m"_2)/(2"r")^2`
F' = G`(7 "m m"_2)/(4"r"^2)` ...(ii)
Now, dividing Equation (i) from Equation (ii), we get:
`=> ("F'")/"F" = (cancel"G"(7 "m m"_2)/(4"r"^2))/(cancel"G"("m m"_2)/"r"^2`
`=> "F'"/"F" = (7 "m m"_2)/(4"r"^2) xx "r"^2/"m m"_2`
`=> "F'"/"F" = (7 cancel("m m"_2))/(4cancel("r"^2)) xx cancel("r"^2)/cancel("m m"_2)`
`=> "F'"/"F" = 7/4`
Now, by substituting the value of F in the Equation, we get:
`=> "F'"/5.6 = 7/4`
`=> "F'" = 7/4 xx 5.6`
`=> "F'" = 7 xx 1.4`
⇒ F' = 9.8 kg wt
APPEARS IN
संबंधित प्रश्न
Is it necessary for the plane of the orbit of a satellite to pass through the centre of the earth?
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
The time period of an earth-satellite in circular orbit is independent of
A body stretches a spring by a particular length at the earth's surface at the equator. At what height above the south pole will it stretch the same spring by the same length? Assume the earth to be spherical.
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Answer the following question in detail.
Obtain an expression for the binding energy of a satellite revolving around the Earth at a certain altitude.
Answer the following question in detail.
What is a critical velocity?
Answer the following question in detail.
Obtain an expression for the critical velocity of an orbiting satellite. On what factors does it depend?
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
The ratio of energy required to raise a satellite of mass 'm' to a height 'h' above the earth's surface of that required to put it into the orbit at same height is ______.
[R = radius of the earth]
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
There is no atmosphere on moon because ____________.
What is the minimum energy required to launch a satellite of mass 'm' from the surface of the earth of mass 'M' and radius 'R' at an altitude 2R?
Two satellites of masses m and 4m orbit the earth in circular orbits of radii 8r and r respectively. The ratio of their orbital speeds is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
A satellite of mass 'm' is revolving around the earth of mass 'M' in an orbit of radius 'r' with constant angular velocity 'ω'. The angular momentum of the satellite is ______.
(G =gravitational constant)
A satellite is revolving in a circular orbit around the earth has total energy 'E'. Its potential energy in that orbit is ______.
The period of revolution of a satellite is ______.
Is it possibe for a body to have inertia but no weight?
An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the earth. If the satellite is stopped in its orbit and allowed to fall freely onto the earth, the speed with which it hits the surface ______ km/s.
[g = 9.8 ms-2 and Re = 6400 km]
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
A satellite is revolving around a planet in a circular orbit close to its surface and ρ is the mean density and R is the radius of the planet, then the period of ______.
(G = universal constant of gravitation)