Advertisements
Advertisements
प्रश्न
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
उत्तर
- Launching of a satellite in an orbit around the Earth cannot take place by the use of a single-stage rocket. It requires a minimum of two stage rocket.
- With the help of the first stage of the rocket, satellite can be taken to the desired height above the surface of the Earth.
- Then the launcher is rotated in a horizontal direction i.e., through 90° using the remote control and the first stage of the rocket is detached.
- With the help of the second stage of the rocket, a specific horizontal velocity (vh) is given to the satellite so that it can revolve in a circular path around the Earth.
- The satellite follows different paths depending upon the horizontal velocity provided to it.
APPEARS IN
संबंधित प्रश्न
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
Two satellites going in equatorial plane have almost same radii. As seen from the earth one moves from east one to west and the other from west to east. Will they have the same time period as seen from the earth? If not which one will have less time period?
A satellite is orbiting the earth close to its surface. A particle is to be projected from the satellite to just escape from the earth. The escape speed from the earth is ve. Its speed with respect to the satellite
Two satellites A and B move round the earth in the same orbit. The mass of B is twice the mass of A.
A body stretches a spring by a particular length at the earth's surface at the equator. At what height above the south pole will it stretch the same spring by the same length? Assume the earth to be spherical.
(a) Find the radius of the circular orbit of a satellite moving with an angular speed equal to the angular speed of earth's rotation. (b) If the satellite is directly above the North Pole at some instant, find the time it takes to come over the equatorial plane. Mass of the earth = 6 × 1024 kg.
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Choose the correct option.
The binding energy of a satellite revolving around the planet in a circular orbit is 3 × 109 J. It's kinetic energy is ______.
State the conditions for various possible orbits of satellite depending upon the horizontal/tangential speed of projection.
Solve the following problem.
Calculate the value of acceleration due to gravity on the surface of Mars if the radius of Mars = 3.4 × 103 km and its mass is 6.4 × 1023 kg.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
A body weighs 5.6 kg wt on the surface of the Earth. How much will be its weight on a planet whose mass is 7 times the mass of the Earth and radius twice that of the Earth’s radius?
Solve the following problem.
What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth?
(Mass of the Earth is 6 × 1024 kg, radius of the Earth = 6400 km and G = 6.67 × 10–11 N m2 kg–2)
There is no atmosphere on moon because ____________.
If a body weighing 40 kg is taken inside the earth to a depth to radius of the earth, then `1/8`th the weight of the body at that point is ______.
Two satellites of masses m1 and m2 (m1 > m2) are revolving round the earth in circular orbit of radii r1 and r2 (r1 > r2) respectively. Which of the following statements is true regarding their speeds v1 and v2?
A geostationary satellite is orbiting the earth at the height of 6R above the surface of earth. R being radius of earth. The time period of another satellite at a height of 2.5 R from the surface of earth is ____________.
If the Earth-Sun distance is held constant and the mass of the Sun is doubled, then the period of revolution of the earth around the Sun will change to ____________.
The ratio of energy required to raise a satellite to a height `(2R)/3` above earth's surface to that required to put it into the orbit at the same height is ______.
R = radius of the earth
In the case of earth, mean radius is 'R', acceleration due to gravity on the surface is 'g', angular speed about its own axis is 'ω'. What will be the radius of the orbit of a geostationary satellite?
Show the nature of the following graph for a satellite orbiting the earth.
- KE vs orbital radius R
- PE vs orbital radius R
- TE vs orbital radius R.
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
A satellite revolves around a planet very close to its surface. By what maximum factor can its kinetic energy be increased suddenly, such that it revolves in orbit in the same way?
Two satellites are orbiting around the earth in circular orbits of same radius. One of them is 10 times greater in mass than the other. Their period of revolutions are in the ratio ______.