मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Charge of 20 µC is Placed on the Positive Plate of an Isolated Parallel-plate Capacitor of Capacitance 10 µF. Calculate the Potential Difference Developed Between the Plates. - Physics

Advertisements
Advertisements

प्रश्न

A charge of 20 µC is placed on the positive plate of an isolated parallel-plate capacitor of capacitance 10 µF. Calculate the potential difference developed between the plates.

बेरीज

उत्तर

Given :
Capacitance of the isolated capacitor = 10 µF

Charge on the positive plate = 20 µC

Effective charge on the capacitor = `(20-0)/2 = 10  "uC"`

The potential difference between the plates of the capacitor is given by `V = Q/C`

`therefore "Potential difference" = (10  "uC")/(10  "uF")`= `1 "V"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - Exercises [पृष्ठ १६८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
Exercises | Q 31 | पृष्ठ १६८

संबंधित प्रश्‍न

Distinguish between Conductors and Insulators.


In the figure shown, an ammeter A and a resistor of 4 Ω are connected to the terminals of the source. The emf of the source is 12 V having an internal resistance of 2 Ω. Calculate the voltmeter and ammeter readings.


Explain the principle of a device that can build up high voltages of the order of a few million volts.


A test charge ‘q’ is moved without acceleration from A to C along the path from A to B and then from B to C in electric field E as shown in the figure. (i) Calculate the potential difference between A and C. (ii) At which point (of the two) is the electric potential more and why?


Both the capacitors shown in figure are made of square plates of edge a. The separations between the plates of the capacitors are d1 and d2 as shown in the figure. A potential difference V is applied between the points a and b. An electron is projected between the plates of the upper capacitor along the central line. With what minimum speed should the electron be projected so that it does not collide with any plate? Consider only the electric forces.


Find the potential difference `V_a - V_b` between the points a and b shown in each part of the figure.


Find the potential difference between the points A and B and between the points B and C of the figure in steady state.


A charge of `+2.0 xx 10^-8 C`  is placed on the positive plate and a charge of `-1.0 xx 10^-8 C` on the negative plate of a parallel-plate capacitor of capacitance `1.2 xx 10^-3  "uF"` . Calculate the potential difference developed between the plates.


A charge of 1 µC is given to one plate of a parallel-plate capacitor of capacitance 0⋅1 µF and a charge of 2 µC is given to the other plate. Find the potential difference developed between the plates.


Two capacitors of capacitance 20⋅0 pF and 50⋅0 pF are connected in series with a 6⋅00 V battery. Find (a) the potential difference across each capacitor and (b) the energy stored in each capacitor.


A capacitor having a capacitance of 100 µF is charged to a potential difference of 50 V. (a) What is the magnitude of the charge on each plate? (b) The charging battery is disconnected and a dielectric of dielectric constant 2⋅5 is inserted. Calculate the new potential difference between the plates. (c) What charge would have produced this potential difference in absence of the dielectric slab. (d) Find the charge induced at a surface of the dielectric slab.


If a positive charge moves in the direction of the electric field ______.


The unit of potential difference as used in electrical circuits is ________.


Two metal pieces having a potential difference of 800 V are 0.02 m apart horizontally. A particle of mass 1.96 × 10–15 kg is suspended in equilibrium between the plates. If e is the elementary charge, then charge on the particle is ______.


Assertion: Electric potential and electric potential energy are different quantities.

Reason: For a system of positive test charge and point charge electric potential energy = electric potential.


A and B are two points in an electric field. If the work done in carrying 4.0C of electric charge from A to B is 16.0 J, the potential difference between A and B is:


An α-particle and a proton are accelerate at same potential difference from rest. What will be the ratio of their final velocity?


A bullet of mass of 2 g is having a charge of 2 µc. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of 10 m/s.


Work done in moving a unit positive charge through a distance of x meter on an equipotential surface is:- 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×