मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be - Physics

Advertisements
Advertisements

प्रश्न

A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at

  1. the least distance of distinct vision (25 cm), and
  2. infinity?

What is the magnifying power of the microscope in each case?

संख्यात्मक

उत्तर

Focal length of the objective lens, f1 = 2.0 cm

Focal length of the eyepiece, f2 = 6.25 cm

Distance between the objective lens and the eyepiece, d = 15 cm

(a) Least distance of distinct vision, d' = 25

∴ Image distance for the eyepiece, v2 = −25 cm

Object distance for the eyepiece = u2

According to the lens formula, we have the relation:

`1/"v"_2 - 1/"u"_2 = 1/"f"_2`

`1/"u"_2 = 1/"v"_2 - 1/"f"_2`

`1/"u"_2 = 1/(-25) - 1/6.25`

`1/"u"_2 = (-1 - 4)/25`

`1/"u"_2 = (-5)/25`

`1/"u"_2 = (-1)/5`

∴ u2 = −5 cm

Image distance for the objective lens, v1 = d + u2 = 15 − 5 = 10 cm

Object distance for the objective lens = u1

According to the lens formula, we have the relation:

`1/"v"_1 - 1/"u"_1 = 1/"f"_1`

`1/"u"_1 = 1/"v"_1 - 1/"f"_1`

`1/"u"_1 = 1/10 - 1/2`

`1/"u"_1 = (1 - 5)/10`

`1/"u"_1 = (-4)/10`

u1 = `10/-4`

∴ u1 = −2.5 cm

Magnitude of the object distance, |u1| = 2.5 cm

The magnifying power of a compound microscope is given by the relation:

`"m" = "v"_1/|"u"_1| (1 + "d'"/"f"_2)`

= `10/2.5 (1+ 25/6.25)`

= 4 × (1 + 4)

= 20

Hence, the magnifying power of the microscope is 20.

(b) The final image is formed at infinity.

∴ Image distance for the eyepiece, v2 = ∞

Object distance for the eyepiece = u2

According to the lens formula, we have the relation:

`1/"v"_2 - 1/"u"_2 = 1/"f"_2`

`1/∞ - 1/"u"_2 = 1/6.25`

∴ u2 = −6.25 cm

Image distance for the objective lens, v1 = d + u2 = 15 − 6.25 = 8.75 cm

Object distance for the objective lens = u1

According to the lens formula, we have the relation:

`1/"v"_1 - 1/"u"_1 = 1/"f"_1`

`1/"u"_1 = 1/"v"_1 - 1/"f"_1`

`1/"u"_1 = 1/8.75 - 1/2.0`

`1/"u"_1 = (2 - 8.75)/17.5`

`1/"u"_1 = -6.75/17.5`

u1 = `-17.5/6.75`

∴ u1 =  −2.59 cm

Magnitude of the object distance, |u1| = 2.59 cm

The magnifying power of a compound microscope is given by the relation:

`"m" = "v"_1/|"u"_1| (("d'")/|"u"_2|)`

= `8.75/2.59  xx 25/6.25`

= 13.51

Hence, the magnifying power of the microscope is 13.51.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Ray Optics and Optical Instruments - Exercise [पृष्ठ ३४५]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 9.11 | पृष्ठ ३४५
एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 11 | पृष्ठ ३४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If this telescope is used to view the moon, what is the diameter of the image of the moon formed by the objective lens ? the diameter of the moon is 3.48 × 106 m and the radius of lunar orbit is 3.8 × 108m.


Draw a labelled ray diagram showing the formation of a final image by a compound microscope at least distance of distinct vision


Define the magnifying power of a compound microscope when the final image is formed at infinity. Why must both the objective and the eyepiece of a compound microscope has short focal lengths? Explain.


Suggest two ways by which the resolving power of a microscope can be increased?


Draw the labelled ray diagram for the formation of image by a compound microscope.

Derive the expression for the total magnification of a compound microscope. Explain why both the objective and the eyepiece of a compound microscope must have short focal lengths.


An object is placed at a distance u from a simple microscope of focal length f. The angular magnification obtained depends


An object is to be seen through a simple microscope of focal length 12 cm. Where should the object be placed so as to produce maximum angular magnification? The least distance for clear vision is 25 cm.


The magnifying power of a converging lens used as a simple microscope is `(1+D/f).` A compound microscope is a combination of two such converging lenses. Why don't we have magnifying power `(1+D/f_0)(1+D/f_0)`?In other words, why can the objective not be treated as a simple microscope but the eyepiece can?


A lady uses + 1.5 D glasses to have normal vision from 25 cm onwards. She uses a 20 D lens as a simple microscope to see an object. Find the maximum magnifying power if she uses the microscope (a) together with her glass (b) without the glass. Do the answers suggest that an object can be more clearly seen through a microscope  without using the correcting glasses?


Draw a neat labelled ray diagram showing the formation of an image at the least distance of distinct vision D by a simple microscope. When the final image is at D, derive an expression for its magnifying power at D. 


What is the advantage of a compound microscope over a simple microscope?


A convex lens of a focal length 5 cm is used as a simple microscope. Where should an object be placed so that the image formed by it lies at the least distance of distinct vision (D = 25 cm)?


How does the resolving power of a microscope change when
(i) the diameter of the objective lens is decreased?
(ii) the wavelength of the incident light is increased ?
Justify your answer in each case.


A thin converging lens of focal length 5cm is used as a simple microscope. Calculate its magnifying power when image formed lies at:

  1. Infinity.
  2. Least distance of distinct vision (D = 25 cm).

The near vision of an average person is 25 cm. To view an object with an angular magnification of 10, what should be the power of the microscope?


With the help of a ray diagram, show how a compound microscope forms a magnified image of a tiny object, at least distance of distinct vision. Hence derive an expression for the magnification produced by it.


A compound microscope consists of two converging lenses. One of them, of smaller aperture and smaller focal length, is called objective and the other of slightly larger aperture and slightly larger focal length is called eye-piece. Both lenses are fitted in a tube with an arrangement to vary the distance between them. A tiny object is placed in front of the objective at a distance slightly greater than its focal length. The objective produces the image of the object which acts as an object for the eye-piece. The eye-piece, in turn, produces the final magnified image.

Which of the following is not correct in the context of a compound microscope?


In a compound microscope an object is placed at a distance of 1.5 cm from the objective of focal length 1.25 cm. If the eye-piece has a focal length of 5 cm and the final image is formed at the near point, find the magnifying power of the microscope.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×