Advertisements
Advertisements
प्रश्न
A die is thrown. Describe the following events:
- A: a number less than 7
- B: a number greater than 7
- C: a multiple of 3
- D: a number less than 4
- E: an even number greater than 4
- F: a number not less than 3
Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F', F'
उत्तर
S = {1, 2, 3, 4, 5, 6}
i. a number is less than 7 = {1, 2, 3, 4, 5, 6}
ii. B: a number is greater than 7 = No number in the dice is greater than 7
= ϕ
iii. C: a number is multiple of 3 = {3, 6}
iv. D: a number is less than 4 = {1, 2, 3}
v. E: a number is even greater than 4 = {6}
vi. F = a number is not less than 3 = {3, 4, 5, 6}
Now A ∪ B = {1, 2, 3, 4, 5, 6} ∪ ϕ
= {1, 2, 3, 4, 5, 6}
A ∩ B= {1, 2, 3, 4, 5, 6} ∩ ϕ
= ϕ
B ∪ C = ϕ ∪ {3, 6} = {3, 6}
E ∪ F = {6} ∪ {3, 4, 5, 6} = {3, 4, 5, 6}
D ∩ E = {1, 2, 3} ∩ {6}
A – C = {1, 2, 3, 4, 5, 6} – {3, 6}
= {1, 2, 4, 5}
F’ = {3, 4, 5, 6}’ = S – {3, 4, 5, 6}
= {1, 2, 3, 4, 5, 6} – {3, 4, 5, 6}
= {1, 2}
E ∩ F’ = {6} ∩ {3, 4, 5, 6}’
= {6} ∩ {1, 2} = ϕ
APPEARS IN
संबंधित प्रश्न
Three coins are tossed once. Let A denote the event "three heads show", B denote the event "two heads and one tail show". C denote the event "three tails show" and D denote the event "a head shows on the first coin". Which events are
- mutually exclusive?
- simple?
- compound?
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
Describe the events
- A'
- not B
- A or B
- A and B
- A but not C
- B or C
- B and C
- A ∩ B' ∩ C'
In a single throw of a die describe the event:
B = Getting a number greater than 7
In a single throw of a die describe the event:
D = Getting a number less than 4
In a single throw of a die describe the event:
E = Getting an even number greater than 4
In a single throw of a die describe the event:
F = Getting a number not less than 3.
Also, find A ∪ B, A ∩ B, B ∩ C, E ∩ F, D ∩ F and \[ \bar { F } \] .
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
\[P (\bar{ A } \cap \bar{ B } )\]
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∩ \[\bar{ B } \] )
A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?
A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?
If three dice are throw simultaneously, then the probability of getting a score of 5 is
If P(A ∪ B) = P(A ∩ B) for any two events A and B, then
Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?
If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate P(A), P(B), and P(A ∩ B)
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.
Determine the probability p, for the following events.
At least one head appears in two tosses of a fair coin.
Determine the probability p, for the following events.
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.
Determine the probability p, for the following events.
The sum of 6 appears in a single toss of a pair of fair dice.
If M and N are any two events, the probability that at least one of them occurs is ______.
The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4
If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.
If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.