Advertisements
Advertisements
प्रश्न
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex
उत्तर
Let E1, E2, E3, E4 and E5 be the events that the surgeries are rated as very complex, complex, routine, simple and very simple respectively.
∴ P(E1) = 0.15
P(E2) = 0.20
P(E3) = 0.31
P(E4) = 0.26
And P(E5) = 0.08
P(complex or very complex) = P(E1 or E2)
⇒ P(E1 ∪ E2) = P(E1) + P(E2) – P(E1 ∩ E2)
= 0.15 + 0.20 – 0
= 0.35 .....[∵ All event are independent]
APPEARS IN
संबंधित प्रश्न
In a single throw of a die describe the event:
C = Getting a multiple of 3
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
\[P (\bar{ A } \cap \bar{ B } )\]
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∩ \[\bar{ B } \] )
A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?
A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?
One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?
If three dice are throw simultaneously, then the probability of getting a score of 5 is
Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?
If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?
An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?
An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears not later than the k th roll of the die?
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. Write the sample space showing all possible outcomes
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?
A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)
The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.
If M and N are any two events, the probability that at least one of them occurs is ______.
The probability of intersection of two events A and B is always less than or equal to those favourable to the event A.
The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4
If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.
Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.