मराठी

A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07Suppose A = {e1, e5 - Mathematics

Advertisements
Advertisements

प्रश्न

A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)

बेरीज

उत्तर

Given that: S = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

A = {e1, e5, e8} and B = {e2, e5, e8, e9}

P(e1) = P(e2) = 0.08

P(e3) = P(e4) = P(e5) = 0.1

P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)  .....(i)

But P(B) = P(e2) + P(e5) + P(e8) + P(e9)

= 0.08 + 0.1 + 0.07 + 0.07

= 0.32

And P(A ∩ B) = {e5, e8}

= P(e5) + P(e8)

= 0.1 + 0.07

= 0.17

Putting the values in equation (i) we get

P(A ∪ B) = 0.25 + 0.32 – 0.17

= 0.40

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Exercise [पृष्ठ २९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 16 Probability
Exercise | Q 16.(b) | पृष्ठ २९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

Describe the events

  1. A' 
  2. not B
  3. A or B
  4. A and B
  5. A but not C
  6. B or C
  7. B and C
  8. A ∩ B' ∩ C'

In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

 C = Getting a multiple of 3


In a single throw of a die describe the event:

E = Getting an even number greater than 4


In a single throw of a die describe the event:

F = Getting a number not less than 3.
Also, find A ∪ BA ∩ BB ∩ CE ∩ FD ∩ F and \[ \bar { F } \] . 

 


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find  
P (A ∩  \[\bar{ B } \] )


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears not later than the k th roll of the die?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate P(A), P(B), and P(A ∩ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.


Determine the probability p, for the following events.
An odd number appears in a single toss of a fair die.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


If M and N are any two events, the probability that at least one of them occurs is ______. 


The probability of intersection of two events A and B is always less than or equal to those favourable to the event A.


The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×