मराठी

A Manufacturer Makes Two Types of Toys a and B. Three Machines Are Needed for this Purpose and the Time (In Minutes) Required for Each Toy on the Machines is Given Below: - Mathematics

Advertisements
Advertisements

प्रश्न

A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.
बेरीज

उत्तर

Suppose the manufacturer makes x toys of type A and y toys of type B.

Since each toy of type A require 12 minutes on machine I and each toy of type B require 6 minutes on machine I, therefore, x toys of type A and y toys of type B require (12x + 6y) minutes on machine I. But, machines I is available for at most 6 hours.

∴ 12x + 6≤ 360

⇒ 2x + ≤ 60

Similarly, each toy of type A require 18 minutes on machine II and each toy of type B require 0 minutes on machine II, therefore, x toys of type A and y toys of type B require (18x + 0y) minutes on machine II. But, machines II is available for at most 6 hours.

∴ 18x + 0≤ 360

⇒ x ≤ 20

Also, each toy of type A require 6 minutes on machine III and each toy of type B require 9 minutes on machine III, therefore, x toys of type A and y toys of type B require (6x + 9y) minutes on machine III. But, machines III is available for at most 6 hours.

∴ 6x + 9≤ 360

⇒ 2x + 3≤ 120

The profit on each toy of type A is ₹7.50 and each toy of type B is ₹5. Therefore, the total profit from x toys of type A and y toys of type B is ₹(7.50+ 5y).

Thus, the given linear programming problem is

Maximise Z = 7.5+ 5y

subject to the constraints

2x + ≤ 60

x ≤ 20

2x + 3≤ 120

x, y ≥ 0

The feasible region determined by the given constraints can be diagrammatically represented as,

The coordinates of the corner points of the feasible region are O(0, 0), A(20, 0), B(20, 20), C(15, 30) and D(0, 40).

The value of the objective function at these points are given in the following table.
 

Corner Point Z = 7.5x + 5y
(0, 0)    7.5 × 0 + 5 × 0 = 0
(20, 0)      7.5 × 20 + 5 × 0 = 150 
(20, 20)         7.5 × 20 + 5 × 20 = 250   
(15, 30)     7.5 × 15 + 5 × 30 = 262.5 → Maximum
(0, 40)    7.5 × 0 + 5 × 40 = 200


The maximum value of Z is 262.5 at x = 15, y = 30.

Hence, 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit. The maximum profit is ₹262.50.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.4 | Q 50 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Minimize : Z = 6x + 4y

Subject to the conditions:

3x + 2y ≥ 12,

x + y ≥ 5,

0 ≤ x ≤ 4,

0 ≤ y ≤ 4


Minimize :Z=6x+4y

Subject to : 3x+2y ≥12

x+y ≥5

0 ≤x ≤4

0 ≤ y ≤ 4 


There are two types of fertilisers 'A' and 'B'. 'A' consists of 12% nitrogen and 5% phosphoric acid whereas 'B' consists of 4% nitrogen and 5% phosphoric acid. After testing the soil conditions, farmer finds that he needs at least 12 kg of nitrogen and 12 kg of phosphoric acid for his crops. If 'A' costs Rs 10 per kg and 'B' cost Rs 8 per kg, then graphically determine how much of each type of fertiliser should be used so that nutrient requirements are met at a minimum cost


A retired person wants to invest an amount of Rs. 50, 000. His broker recommends investing in two type of bonds ‘A’ and ‘B’ yielding 10% and 9% return respectively on the invested amount. He decides to invest at least Rs. 20,000 in bond ‘A’ and at least Rs. 10,000 in bond ‘B’. He also wants to invest at least as much in bond ‘A’ as in bond ‘B’. Solve this linear programming problem graphically to maximise his returns.


Find graphically, the maximum value of z = 2x + 5y, subject to constraints given below :

2x + 4y  83

x + y  6

x + y  4

x  0, y 0


Solve the following linear programming problem graphically :

Maximise Z = 7x + 10y subject to the constraints

4x + 6y ≤ 240

6x + 3y ≤ 240

x ≥ 10

x ≥ 0, y ≥ 0


Solve the following L.P.P. graphically Maximise Z = 4x + y 

Subject to following constraints  x + y ≤ 50

3x + y ≤ 90,

x ≥ 10

x, y ≥ 0


Maximize Z = 3x + 4y
Subject to

\[2x + 2y \leq 80\]
\[2x + 4y \leq 120\]


Maximize Z = 3x + 5y
Subject to

\[x + 2y \leq 20\]
\[x + y \leq 15\]
\[ y \leq 5\]
\[ x, y \geq 0\]


Show the solution zone of the following inequalities on a graph paper:

\[5x + y \geq 10\]

\[ x + y \geq 6\]

\[x + 4y \geq 12\]

\[x \geq 0, y \geq 0\]

Find x and y for which 3x + 2y is minimum subject to these inequalities. Use a graphical method.


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


Kellogg is a new cereal formed of a mixture of bran and rice that contains at least 88 grams of protein and at least 36 milligrams of iron. Knowing that bran contains 80 grams of protein and 40 milligrams of iron per kilogram, and that rice contains 100 grams of protein and 30 milligrams of iron per kilogram, find the minimum cost of producing this new cereal if bran costs Rs 5 per kg and rice costs Rs 4 per kg


A dietician has to develop a special diet using two foods P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Q contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and at most 300 units of cholesterol. How many packets of each food should be used to minimise the amount of vitamin A in the diet? What is the minimum of vitamin A.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing ₹250 per bag, contains 2 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing ₹200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


Two tailors, A and B earn Rs 15 and Rs 20 per day respectively. A can stitch 6 shirts and 4 pants  while B can stitch 10 shirts and 4 pants per day. How many days shall each work if it is desired to produce (at least) 60 shirts and 32 pants at a minimum labour cost?


A furniture manufacturing company plans to make two products : chairs and tables. From its available resources which consists of 400 square feet to teak wood and 450 man hours. It is known that to make a chair requires 5 square feet of wood and 10 man-hours and yields a profit of Rs 45, while each table uses 20 square feet of wood and 25 man-hours and yields a profit of Rs 80. How many items of each product should be produced by the company so that the profit is maximum?


A factory uses three different resources for the manufacture of two different products, 20 units of the resources A, 12 units of B and 16 units of C being available. 1 unit of the first product requires 2, 2 and 4 units of the respective resources and 1 unit of the second product requires 4, 2 and 0 units of respective resources. It is known that the first product gives a profit of 2 monetary units per unit and the second 3. Formulate the linear programming problem. How many units of each product should be manufactured for maximizing the profit? Solve it graphically.


A firm manufactures headache pills in two sizes A and B. Size A contains 2 grains of aspirin, 5 grains of bicarbonate and 1 grain of codeine; size B contains 1 grain of aspirin, 8 grains of bicarbonate and 66 grains of codeine. It has been found by users that it requires at least 12 grains of aspirin, 7.4 grains of bicarbonate and 24 grains of codeine for providing immediate effects. Determine graphically the least number of pills a patient should have to get immediate relief. Determine also the quantity of codeine consumed by patient.


A company manufactures two types of novelty Souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours available for assembling. The profit is 50 paise each for type A and 60 paise each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit?


A manufacturer of patent medicines is preparing a production plan on medicines, A and B. There are sufficient raw materials available to make 20000 bottles of A and 40000 bottles of B, but there are only 45000 bottles into which either of the medicines can be put. Further, it takes 3 hours to prepare enough material to fill 1000 bottles of A, it takes 1 hour to prepare enough material to fill 1000 bottles of B and there are 66 hours available for this operation. The profit is Rs 8 per bottle for A and Rs 7 per bottle for B. How should the manufacturer schedule his production in order to maximize his profit?


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 400 is made on each first class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats of first class. However, at least 4 times as many passengers prefer to travel by economy class to the first class. Determine how many each type of tickets must be sold in order to maximize the profit for the airline. What is the maximum profit.


A company sells two different products, A and B. The two products are produced in a common production process, which has a total capacity of 500 man-hours. It takes 5 hours to produce a unit of A and 3 hours to produce a unit of B. The market has been surveyed and company officials feel that the maximum number of unit of A that can be sold is 70 and that for B is 125. If the profit is Rs 20 per unit for the product A and Rs 15 per unit for the product B, how many units of each product should be sold to maximize profit?


A box manufacturer makes large and small boxes from a large piece of cardboard. The large boxes require 4 sq. metre per box while the small boxes require 3 sq. metre per box. The manufacturer is required to make at least three large boxes and at least twice as many small boxes as large boxes. If 60 sq. metre of cardboard is in stock, and if the profits on the large and small boxes are Rs 3 and Rs 2 per box, how many of each should be made in order to maximize the total profit?


An oil company has two depots, A and B, with capacities of 7000 litres and 4000 litres respectively. The company is to supply oil to three petrol pumps, DEF whose requirements are 4500, 3000 and 3500 litres respectively. The distance (in km) between the depots and petrol pumps is given in the following table:
Figure
Assuming that the transportation cost per km is Rs 1.00 per litre, how should the delivery be scheduled in order that the transportation cost is minimum?


There are two factories located one at place P and the other at place Q. From these locations, a certain commodity is to be delivered to each of the three depots situated at A, B and C. The weekly requirements of the depots are respectively 5, 5 and 4 units of the commodity while the production capacity of the factories at P and Q are respectively 8 and 6 units. The cost of transportation per unit is given below:
 

From \ To Cost (in ₹)
  A B C
P 160 100 150
Q 100 120 100


How many units should be transported from each factory to each depot in order that the transportation cost is minimum. What will be the minimum transportation cost?


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A
require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours and 20 minutes available  for cutting and 4 hours available for assembling. The profit is Rs. 50 each for type A and Rs. 60 each  for type B souvenirs. How many souvenirs of each type should the company manufacture in order to  maximize profit? Formulate the above LPP and solve it graphically and also find the maximum profit. 


A company manufactures two types of cardigans: type A and type B. It costs ₹ 360 to make a type A cardigan and ₹ 120 to make a type B cardigan. The company can make at most 300 cardigans and spend at most ₹ 72000 a day. The number of cardigans of type B cannot exceed the number of cardigans of type A by more than 200. The company makes a profit of ₹ 100 for each cardigan of type A and ₹ 50 for every cardigan of type B. 

Formulate this problem as a linear programming problem to maximize the profit to the company. Solve it graphically and find the maximum profit.


Find the graphical solution for the system of linear inequation 2x + y ≤ 2, x − y ≤ 1


Draw the graph of inequalities x ≤ 6, y −2 ≤ 0, x ≥ 0, y ≥ 0 and indicate the feasible region


A feasible region in the set of points which satisfy ____________.


Let R be the feasible region (convex polygon) for a linear programming problem and let Z = ax + by be the objective function. When Z has an optimal value (maximum or minimum), where the variables x and y are subject to constraints described by linear inequalities,


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and ____________.


In the Corner point method for solving a linear programming problem the second step after finding the feasible region of the linear programming problem and determining its corner points is ____________.


A manufacturer wishes to produce two commodities A and B. The number of units of material, labour and equipment needed to produce one unit of each commodity is shown in the table given below. Also shown is the available number of units of each item, material, labour, and equipment.

Items Commodity A Commodity B Available no. of Units
Material 1 2 8
Labour 3 2 12
Equipment 1 1 10

Find the maximum profit if each unit of commodity A earns a profit of ₹ 2 and each unit of B earns a profit of ₹ 3.


The objective function Z = ax + by of an LPP has maximum vaiue 42 at (4, 6) and minimum value 19 at (3, 2). Which of the following is true?


The corner points of the feasible region of a linear programming problem are (0, 4), (8, 0) and `(20/3, 4/3)`. If Z = 30x + 24y is the objective function, then (maximum value of Z – minimum value of Z) is equal to ______.


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×