मराठी

Maximize-z-3x-5y-subject-x-2-y-20-x-y-15-y-5-x-y-0 - Mathematics

Advertisements
Advertisements

प्रश्न

Maximize Z = 3x + 5y
Subject to

\[x + 2y \leq 20\]
\[x + y \leq 15\]
\[ y \leq 5\]
\[ x, y \geq 0\]

उत्तर

We need to maximize Z = 3x + 5y

First, we will convert the given inequations into equations, we obtain the following equations:
x + 2y = 20, x + y = 15, y = 5 , x = 0 and y = 0.

The line x + 2y = 20 meets the coordinate axis at A(20, 0) and B(0,10). Join these points to obtain the line x + 2y = 20.
Clearly, (0, 0) satisfies the inequation x + 2y ≤ 20. So, the region in xy-plane that contains the origin represents the solution set of the given equation.

The line x + y = 15 meets the coordinate axis at C(15, 0) and D(0,15). Join these points to obtain the line x + y = 15.
Clearly, (0, 0) satisfies the inequation x + ≤ 15. So, the region in xy-plane that contains the origin represents the solution set of the given equation.

y = 5 is the line passing through (0, 5) and parallel to the X axis.The region below the line y = 5 will satisfy the given inequation.

Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations.
These lines are drawn using a suitable scale.

The corner points of the feasible region are O(0, 0), \[C\left( 15, 0 \right)\] , \[E\left( 10, 5 \right)\] and \[F\left( 0, 5 \right)\] The values of Z at these corner points are as follows.

Corner point Z = 3x + 5y
O(0, 0) 3 × 0 + 5 × 0 = 0
\[C\left( 15, 0 \right)\]
3 × 15 + 5 × 0 = 45
\[E\left( 10, 5 \right)\]
3 × 10 + 5 × 5 = 55
\[F\left( 0, 5 \right)\]
3 × 0 + 5 × 5 = 25

We see that the maximum value of the objective function Z is 55 which is at \[E\left( 10, 5 \right)\]

Thus, the optimal value of Z is 55.

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.2 | Q 15 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A dealer in rural area wishes to purchase a number of sewing machines. He has only Rs 5,760 to invest and has space for at most 20 items for storage. An electronic sewing machine cost him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated sewing machine at a profit of Rs 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit? Make it as a LPP and solve it graphically.


Minimum and maximum z = 5x + 2y subject to the following constraints:

x-2y ≤ 2

3x+2y ≤ 12

-3x+2y ≤ 3

x ≥ 0,y ≥ 0


Solve the following linear programming problem graphically :

Maximise Z = 7x + 10y subject to the constraints

4x + 6y ≤ 240

6x + 3y ≤ 240

x ≥ 10

x ≥ 0, y ≥ 0


Solve the following L.P.P. graphically Maximise Z = 4x + y 

Subject to following constraints  x + y ≤ 50

3x + y ≤ 90,

x ≥ 10

x, y ≥ 0


Maximise z = 8x + 9y subject to the constraints given below :
2x + 3y ≤ 6
3x − 2y ≤6
y ≤ 1
xy ≥ 0


Maximize Z = 50x + 30y
Subject to 

\[2x + y \leq 18\]
\[3x + 2y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 15x + 10y
Subject to 

\[3x + 2y \leq 80\]
\[2x + 3y \leq 70\]
\[ x, y \geq 0\]

 


Maximize Z = 2x + 3y
Subject to

\[x + y \geq 1\]
\[10x + y \geq 5\]
\[x + 10y \geq 1\]
\[ x, y \geq 0\]


Find the maximum and minimum value of 2x + y subject to the constraints:
x + 3y ≥ 6, x − 3y ≤ 3, 3x + 4y ≤ 24, − 3x + 2y ≤ 6, 5x + y ≥ 5, xy ≥ 0.


Find the minimum value of 3x + 5y subject to the constraints
− 2x + y ≤ 4, x + y ≥ 3, x − 2y ≤ 2, xy ≥ 0.


A hospital dietician wishes to find the cheapest combination of two foods, A and B, that contains at least 0.5 milligram of thiamin and at least 600 calories. Each unit of Acontains 0.12 milligram of thiamin and 100 calories, while each unit of B contains 0.10 milligram of thiamin and 150 calories. If each food costs 10 paise per unit, how many units of each should be combined at a minimum cost?


Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contains at least 8 units of vitamin A and 11 units of vitamin B. Food P costs ₹60/kg and food Q costs ₹80/kg. Food P contains 3 units/kg of vitamin A and 5 units/kg of vitamin B while food Q contains 4 units/kg of vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.


A manufacturer has three machines installed in his factory. machines I and II are capable of being operated for at most 12 hours whereas Machine III must operate at least for 5 hours a day. He produces only two items, each requiring the use of three machines. The number of hours required for producing one unit each of the items on the three machines is given in the following table:

Item Number of hours required by the machine

A
B
I II III
1
2
2
1
1
5/4

He makes a profit of Rs 6.00 on item A and Rs 4.00 on item B. Assuming that he can sell all that he produces, how many of each item should he produces so as to maximize his profit? Determine his maximum profit. Formulate this LPP mathematically and then solve it.


A manufacturer makes two types A and B of tea-cups. Three machines are needed for the manufacture and the time in minutes required for each cup on the machines is given below:

  Machines
I II III
A
B
12
6
18
0
6
9

Each machine is available for a maximum of 6 hours per day. If the profit on each cup A is 75 paise and that on each cup B is 50 paise, show that 15 tea-cups of type A and 30 of type B should be manufactured in a day to get the maximum profit.


A manufacturer produces two types of steel trunks. He has two machines A and B. For completing, the first types of the trunk requires 3 hours on machine A and 3 hours on machine B, whereas the second type of the trunk requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most for 18 hours and 15 hours per day respectively. He earns a profit of Rs 30 and Rs 25 per trunk of the first type and the second type respectively. How many trunks of each type must he make each day to make maximum profit?


A gardener has supply of fertilizer of type I which consists of 10% nitrogen and 6% phosphoric acid and type II fertilizer which consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, he finds that he needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for his crop. If the type I fertilizer costs 60 paise per kg and type II fertilizer costs 40 paise per kg, determine how many kilograms of each fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?


A firm makes items A and B and the total number of items it can make in a day is 24. It takes one hour to make an item of A and half an hour to make an item of B. The maximum time available per day is 16 hours. The profit on an item of A is Rs 300 and on one item of B is Rs 160. How many items of each type should be produced to maximize the profit? Solve the problem graphically.


A box manufacturer makes large and small boxes from a large piece of cardboard. The large boxes require 4 sq. metre per box while the small boxes require 3 sq. metre per box. The manufacturer is required to make at least three large boxes and at least twice as many small boxes as large boxes. If 60 sq. metre of cardboard is in stock, and if the profits on the large and small boxes are Rs 3 and Rs 2 per box, how many of each should be made in order to maximize the total profit?


A manufacturer makes two products, A and B. Product A sells at Rs 200 each and takes 1/2 hour to make. Product B sells at Rs 300 each and takes 1 hour to make. There is a permanent order for 14 units of product A and 16 units of product B. A working week consists of 40 hours of production and the weekly turn over must not be less than Rs 10000. If the profit on each of product A is Rs 20 and an product B is Rs 30, then how many of each should be produced so that the profit is maximum? Also find the maximum profit.

 


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced.


Tow godowns, A and B, have grain storage capacity of 100 quintals and 50 quintals respectively. They supply to 3 ration shops, DE and F, whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the following table:

  Transportation cost per quintal(in Rs.)
From-> A B
To
D 6.00 4.00
E 3.00 2.00
F 2.50 3.00

How should the supplies be transported in order that the transportation cost is minimum?


A medical company has factories at two places, A and B. From these places, supply is made to each of its three agencies situated at PQ and R. The monthly requirements of the agencies are respectively 40, 40 and 50 packets of the medicines, while the production capacity of the factories, A and B, are 60 and 70 packets respectively. The transportation cost per packet from the factories to the agencies are given below:

Transportation Cost per packet(in Rs.)
From-> A B
To 
P 5 4
Q 4 2
R 3 5
 How many packets from each factory be transported to each agency so that the cost of transportation is minimum? Also find the minimum cost?

A company manufactures two types of products A and B. Each unit of A requires 3 grams of nickel and 1 gram of chromium, while each unit of B requires 1 gram of nickel and 2 grams of chromium. The firm can produce 9 grams of nickel and 8 grams of chromium. The profit is ₹ 40 on each unit of the product of type A and ₹ 50 on each unit of type B. How many units of each type should the company manufacture so as to earn a maximum profit? Use linear programming to find the solution.


Sketch the graph of inequation x ≥ 5y in xoy co-ordinate system


Find the feasible solution of linear inequation 2x + 3y ≤ 12, 2x + y ≤ 8, x ≥ 0, y ≥ 0 by graphically


Area of the region bounded by y = cos x, x = 0, x = π and X-axis is ______ sq.units.


For the function z = 19x + 9y to be maximum under the constraints 2x + 3y ≤ 134, x + 5y ≤ 200, x ≥ 0, y ≥ 0; the values of x and y are ______.


The feasible region of an LPP is shown in the figure. If z = 3x + 9y, then the minimum value of z occurs at ______.


The constraints of an LPP are 7 ≤ x ≤ 12, 8 ≤ y ≤ 13. Determine the vertices of the feasible region formed by them.


The minimum value of z = 7x + 9y subject to 3x + y ≤ 6, 5x + 8y ≤ 40, x ≥ 0, y ≥ 2 is ______.


A feasible region in the set of points which satisfy ____________.


A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of an L.P.P. is called its ____________.


The comer point of the feasible region determined by the following system of linear inequalities:

2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let x = Px + qx where P, q > 0 condition on P and Q so that the maximum of z occurs at both (3, 4) and (0, 5) is


Solve the following Linear Programming Problem graphically:

Maximize: z = – x + 2y,

Subject to the constraints: x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


Minimize z = x + 2y,

Subject to x + 2y ≥ 50, 2x – y ≤ 0, 2x + y ≤ 100, x ≥ 0, y ≥ 0.


Aman has ₹ 1500 to purchase rice and wheat for his grocery shop. Each sack of rice and wheat costs ₹ 180 and Rupee ₹ 120 respectively. He can store a maximum number of 10 bags in his shop. He will earn a profit of ₹ 11 per bag of rice and ₹ 9 per bag of wheat.

  1. Formulate a Linear Programming Problem to maximise Aman’s profit.
  2. Calculate the maximum profit.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×