मराठी

Minimize Z = X − 5y + 20 Subject to X − Y ≥ 0 − X + 2 Y ≥ 2 X ≥ 3 Y ≤ 4 X , Y ≥ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Minimize Z = x − 5y + 20
Subject to

\[x - y \geq 0\]
\[ - x + 2y \geq 2\]
\[ x \geq 3\]
\[ y \leq 4\]
\[ x, y \geq 0\]

उत्तर

First, we will convert the given inequations into equations, we obtain the following equations:
x − y = 0, − x + 2y = 2, x = 3, y = 4, x = 0 and y = 0. 

Region represented by x − y ≥ 0 or x ≥ y:
The line x − y = 0 or y passes through the origin.The region to the right of the line y will satisfy the given inequation.
Let's check by taking an example like if we take a point (4, 3) to the right of the line xy .Here ≥ y.So, it satisfy the given inequation.  Take a point (4, 5) to the left of the line x = y. Here, x ≤ y. That means it does not satisfy the given inequation.
  Region represented by − x + 2y ≥ 2:
The line − x + 2y = 2 meets the coordinate axes at A(−2, 0) and B(0, 1) respectively. By joining these points we obtain the line
− x + 2y = 2.Clearly (0,0) does not satisfies the inequation − x + 2y ≥ 2. So,the region in xy plane which does not contain the origin represents the solution set of the inequation − x + 2y ≥ 2 .
The line x = 3 is the line that passes through the point (3, 0) and is parallel to Y axis. x ≥ 3 is the region to the right of the line x = 3.
The line y = 4 is the line that passes through the point (0, 4) and is parallel to X axis. y ≤ 4 is the region below the line y = 4.
 Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0 and ≥ 0.
The feasible region determined by the system of constraints x − y ≥ 0,− x + 2y ≥ 2, x ≥ 3, ≤ 4, x ≥ 0 and y ≥ 0 are as follows.

The corner points of the feasible region are \[C\left( 3, \frac{5}{2} \right)\], \[D\left( 3, 3 \right)\],  E(4, 4) and F(6, 4).
The values of Z at these corner points are as follows.

Corner point Z = x  − 5y + 20
\[C\left( 3, \frac{5}{2} \right)\] 
3 − 5 × \[\frac{5}{2}\]+20= \[\frac{21}{2}\]
 
\[D\left( 3, 3 \right)\]
3 − 5 × 3 + 20 = 8
E(4, 4) 4 − 5 × 4 + 20 = 4
F(6, 4)
6 − 5 × 4 + 20 = 6

Therefore, the minimum value of Z is 4 at the point E(4, 4). Hence, x = 4 and y = 4 is the optimal solution of the given LPP.
Thus, the optimal value of Z is 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.2 | Q 14 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A company manufactures bicycles and tricycles each of which must be processed through machines A and B. Machine A has maximum of 120 hours available and machine B has maximum of 180 hours available. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B.
If profits are Rs. 180 for a bicycle and Rs. 220 for a tricycle, formulate and solve the L.P.P. to determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.


Maximise z = 8x + 9y subject to the constraints given below :
2x + 3y ≤ 6
3x − 2y ≤6
y ≤ 1
xy ≥ 0


Maximize Z = 50x + 30y
Subject to 

\[2x + y \leq 18\]
\[3x + 2y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 4x + 3y
subject to

\[3x + 4y \leq 24\]
\[8x + 6y \leq 48\]
\[ x \leq 5\]
\[ y \leq 6\]
\[ x, y \geq 0\]


Maximize Z = 10x + 6y
Subject to

\[3x + y \leq 12\]
\[2x + 5y \leq 34\]
\[ x, y \geq 0\]


Minimize Z = 30x + 20y
Subject to 

\[x + y \leq 8\]
\[ x + 4y \geq 12\]
\[5x + 8y = 20\]
\[ x, y \geq 0\]


Maximize Z = 2x + 3y
Subject to

\[x + y \geq 1\]
\[10x + y \geq 5\]
\[x + 10y \geq 1\]
\[ x, y \geq 0\]


Find graphically, the maximum value of Z = 2x + 5y, subject to constraints given below:

2x + 4y ≤ 8
3x + y ≤ 6
x + y ≤ 4 
x ≥ 0, ≥ 0   


A dietician mixes together two kinds of food in such a way that the mixture contains at least 6 units of vitamin A, 7 units of vitamin B, 11 units of vitamin and 9 units of vitamin D. The vitamin contents of 1 kg of food X and 1 kg of food Y are given below:

  Vitamin
A
Vitamin
B

Vitamin
C

Vitamin
D
Food X
Food Y
1
2
1
1
1
3
2
1

One kg food X costs Rs 5, whereas one kg of food Y costs Rs 8. Find the least cost of the mixture which will produce the desired diet.


A factory manufactures two types of screws, A and B, each type requiring the use of two machines - an automatic and a hand-operated. It takes 4 minute on the automatic and 6 minutes on the hand-operated machines to manufacture a package of screws 'A', while it takes 6 minutes on the automatic and 3 minutes on the hand-operated machine to manufacture a package of screws 'B'. Each machine is available for at most 4 hours on any day. The manufacturer can sell a package of screws 'A' at a profit of 70 P and screws 'B' at a profit of Rs 1. Assuming that he can sell all the screws he can manufacture, how many packages of each type should the factory owner produce in a day in order to maximize his profit? Determine the maximum profit.


A firm manufacturing two types of electric items, A and B, can make a profit of Rs 20 per unit of A and Rs 30 per unit of B. Each unit of A requires 3 motors and 4 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of these per month is restricted to 210 motors and 300 transformers. Type B is an export model requiring a voltage stabilizer which has a supply restricted to 65 units per month. Formulate the linear programing problem for maximum profit and solve it graphically.


A chemical company produces two compounds, A and B. The following table gives the units of ingredients, C and D per kg of compounds A and B as well as minimum requirements of C and D and costs per kg of A and B. Find the quantities of A and B which would give a supply of C and D at a minimum cost.

  Compound Minimum requirement
A B  
Ingredient C
Ingredient D
1
3
2
1
80
75
Cost (in Rs) per kg 4 6 -

A manufacturer produces two types of steel trunks. He has two machines A and B. For completing, the first types of the trunk requires 3 hours on machine A and 3 hours on machine B, whereas the second type of the trunk requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most for 18 hours and 15 hours per day respectively. He earns a profit of Rs 30 and Rs 25 per trunk of the first type and the second type respectively. How many trunks of each type must he make each day to make maximum profit?


Anil wants to invest at most Rs 12000 in Saving Certificates and National Saving Bonds. According to rules, he has to invest at least Rs 2000 in Saving Certificates and at least Rs 4000 in National Saving Bonds. If the rate of interest on saving certificate is 8% per annum and the rate of interest on National Saving Bond is 10% per annum, how much money should he invest to earn maximum yearly income? Find also his maximum yearly income.


A firm makes items A and B and the total number of items it can make in a day is 24. It takes one hour to make an item of A and half an hour to make an item of B. The maximum time available per day is 16 hours. The profit on an item of A is Rs 300 and on one item of B is Rs 160. How many items of each type should be produced to maximize the profit? Solve the problem graphically.


A manufacturer makes two products, A and B. Product A sells at Rs 200 each and takes 1/2 hour to make. Product B sells at Rs 300 each and takes 1 hour to make. There is a permanent order for 14 units of product A and 16 units of product B. A working week consists of 40 hours of production and the weekly turn over must not be less than Rs 10000. If the profit on each of product A is Rs 20 and an product B is Rs 30, then how many of each should be produced so that the profit is maximum? Also find the maximum profit.

 


A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is Rs 300 and that on a chain is Rs 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an LPP and solve it graphically.


A manufacturer has three machine I, II, III installed in his factory. Machines I and II are capable of being operated for at most 12 hours whereas machine III must be operated for atleast 5 hours a day. She produces only two items M and N each requiring the use of all the three machines.
The number of hours required for producing 1 unit each of M and N on the three machines are given in the following table:
 

Items Number of hours required on machines
  I II III
M 1 2 1
N 2 1 1.25


She makes a profit of ₹600 and ₹400 on items M and N respectively. How many of each item should she produce so as to maximise her profit assuming that she can sell all the items that she produced? What will be the maximum profit?


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced.


The region represented by the inequation system xy ≥ 0, y ≤ 6, x + y ≤ 3 is 


The point at which the maximum value of x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is obtained, is ______.


The value of objective function is maximum under linear constraints ______.


From the details given below, calculate the five-year moving averages of the number of students who have studied in a school. Also, plot these and original data on the same graph paper.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Number of Students 332 317 357 392 402 405 410 427 405 438

A manufacturer has employed 5 skilled men and 10 semi-skilled men and makes two models A and B of an article. The making of one item of model A requires 2 hours of work by a skilled man and 2 hours work by a semi-skilled man. One item of model B requires 1 hour by a skilled man and 3 hours by a semi-skilled man. No man is expected to work more than 8 hours per day. The manufacturer's profit on an item of model A is ₹ 15 and on an item of model B is ₹ 10. How many items of each model should be made per day in order to maximize daily profit? Formulate the above LPP and solve it graphically and find the maximum profit.


For the LPP, maximize z = x + 4y subject to the constraints x + 2y ≤ 2, x + 2y ≥ 8, x, y ≥ 0 ______.


Maximise and Minimise Z = 3x – 4y subject to x – 2y ≤ 0, – 3x + y ≤ 4, x – y ≤ 6, x, y ≥ 0


Corner points of the feasible region determined by the system of linear constraints are (0, 3), (1, 1) and (3, 0). Let Z = px + qy, where p, q > 0. Condition on p and q so that the minimum of Z occurs at (3, 0) and (1, 1) is ______.


In Corner point method for solving a linear programming problem the first step is to ____________.


The feasible region (shaded) for a L.P.P is shown in the figure. The maximum Z = 5x + 7y is ____________.


The maximum value of Z = 3x + 4y subjected to contraints x + y ≤ 40, x + 2y ≤ 60, x ≥ 0 and y ≥ 0 is ____________.


Minimise z = – 3x + 4y subject to x + 2y ≤ 8, 3x + 2y ≤ 12, x ≥ 0, y ≥ 0 What will be the minimum value of z ?


Solve the following Linear Programming Problem graphically:

Maximize Z = 400x + 300y subject to x + y ≤ 200, x ≤ 40, x ≥ 20, y ≥ 0


The maximum value of z = 5x + 2y, subject to the constraints x + y ≤ 7, x + 2y ≤ 10, x, y ≥ 0 is ______.


The objective function Z = ax + by of an LPP has maximum vaiue 42 at (4, 6) and minimum value 19 at (3, 2). Which of the following is true?


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


If x – y ≥ 8, x ≥ 3, y ≥ 3, x ≥ 0, y ≥ 0 then find the coordinates of the corner points of the feasible region.


Find feasible solution for the following system of linear inequation graphically.

3x + 4y ≥ 12, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×