मराठी

A Right Circular Cone is Divided into Three Parts by Trisecting Its Height by Two Planes Drawn Parallel to the Base. - Mathematics

Advertisements
Advertisements

प्रश्न

A right circular cone is divided into three parts by trisecting its height by two planes drawn parallel to the base. Show that the volumes of the three portions starting from the top are in the ratio 1 : 7 : 19 ?

उत्तर

Let ABC be a right circular cone of height 3h and base radius r. This cone is cut by two planes such that AQ = QP = PO = h.

Since

\[∆ ABO~ ∆ AEP\]    (AA Similarity)
\[\therefore \frac{AO}{AP} = \frac{BO}{EP}\]
\[ \Rightarrow \frac{3h}{2h} = \frac{r}{r_1}\]
\[ \Rightarrow r_1 = \frac{2r}{3} . . . . . \left( 1 \right)\]

Also,

\[∆ ABO~ ∆ AQG\]     (AA Similarity)
\[\therefore \frac{AO}{AQ} = \frac{BO}{GQ}\]
\[ \Rightarrow \frac{3h}{h} = \frac{r}{r_2}\]
\[ \Rightarrow r_2 = \frac{r}{3} . . . . . \left( 2 \right)\]
Now,
Voulme of cone AGF,

\[V_1 = \frac{1}{3}\pi {r_2}^2 h\]

\[ = \frac{1}{3}\pi \left( \frac{r}{3} \right)^2 h \left[ From \left( 2 \right) \right]\]

\[ = \frac{1}{27}\pi r^2 h\]

Voulme of the frustum GFDE,

\[V_2 = \frac{1}{3}\pi\left( {r_1}^2 + {r_2}^2 + r_1 r_2 \right)h\]
\[ = \frac{1}{3}\pi\left( \frac{4 r^2}{9} + \frac{r^2}{9} + \frac{2 r^2}{9} \right)h \left[ From \left( 1 \right) and \left( 2 \right) \right]\]
\[ = \frac{7}{27}\pi r^2 h\]

Voulme of the frustum EDCB,

\[V_3 = \frac{1}{3}\pi\left( r^2 + {r_1}^2 + r_1 r \right)h\]
\[ = \frac{1}{3}\pi\left( r^2 + \frac{4 r^2}{9} + \frac{2 r^2}{3} \right)h \left[ From \left( 1 \right) and \left( 2 \right) \right]\]
\[ = \frac{19}{27}\pi r^2 h\]

∴ Required ratio =\[V_1 : V_2 : V_3 = \frac{1}{27}\pi r^2 h: \frac{7}{27}\pi r^2 h: \frac{19}{27}\pi r^2 h = 1: 7: 19\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×