मराठी

A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure 6.1. What will be the value of ∆H for the cycle as a whole? - Chemistry

Advertisements
Advertisements

प्रश्न

A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure 6.1. What will be the value of ∆H for the cycle as a whole?

टीपा लिहा

उत्तर

For a cyclic process, ΔH = 0

shaalaa.com
Thermodynamics Applications - Work
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Thermodynamics - Multiple Choice Questions (Type - I) [पृष्ठ ७३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Chemistry [English] Class 11
पाठ 6 Thermodynamics
Multiple Choice Questions (Type - I) | Q 31 | पृष्ठ ७३

संबंधित प्रश्‍न

Expansion of a gas in vacuum is called free expansion. Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vacuum until its total volume is 5 litre?


What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, pext in a single step as shown in figure. Explain graphically.


How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?


Represent the potential energy/enthalpy change in the following processes graphically.

(a) Throwing a stone from the ground to roof.

(b) \[\ce{1/2 H2(g) + 1/2 Cl2 (g) ⇌ HCl (g) Δ_rH^Θ = - 92.32 kJ mol^{-1}}\]

In which of the processes potential energy/enthalpy change is contributing factor to the spontaneity?


Match the following :

A B
(i) Adiabatic process (a) Heat
(ii) Isolated system (b) At constant volume
(iii) Isothermal change (c) First law of thermodynamics
(iv) Path function (d) No exchange of energy and matter
(v) State function (e) No transfer of heat
(vi) ΔU = q (f) Constant temperature
(vii) Law of conservation of energy (g) Internal energy
(viii) Reversible process (h) Pext = o
(ix) Free expansion (i) At constant pressure
(x) ΔH = q (j) Infinitely slow process which proceeds through a series of equilibrium states.
(xi) Intensive property (k) Entropy
(xii) Extensive property (l) Pressure
  (m) Specific heat

Match the following :

Column I Column II
(i) Entropy of vapourisation (a) decreases
(ii) K for spontaneous process (b) is always positive
(iii) Crystalline solid state (c) lowest entropy
(iv) ∆U in adiabatic expansion of ideal gas (d) `(∆H_(vap))/T_b`

Graphically show the total work done in an expansion when the state of an ideal gas is changed reversibly and isothermally from \[\ce{(p_i, V_i)}\] to \[\ce{(p_f , V_f )}\]. With the help of a pV plot compare the work done in the above case with that carried out against a constant external pressure \[\ce{p_f}\].


The net work done in the following cycle for one mol of an ideal gas will be ______ (in calorie), where in process BC, PT = constant. (R = 2 cal/mol-K).


1 mole of an ideal monoatomic gas initially at 1 atm and 300 K experiences a process by which pressure is doubled. The nature of the process is unspecified but 6. ΔU = 900 cal. The final volume will be ______ l.

[Given : R = 0.08 atm lit. I mol/K = 2 Cal/K/mol J]


Five moles of an ideal gas at 1 bar and 298 K is expanded into the vacuum to double the volume. The work done is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×