Advertisements
Advertisements
प्रश्न
What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, pext in a single step as shown in figure. Explain graphically.
उत्तर
Assumption: Cylinder is filled with one mole gas, and the piston is frictionless. Let the pressure of gas inside be p and the volume of gas be \[\ce{V_{I}}\].
Piston is moved towards the inside to make the external pressure \[\ce{(P_{ext})}\] equal to p. Now, let us assume that this change takes place in a single step, hence, \[\ce{V}\] is the final volume. The work done by the piston is depicted in the graph shown below by shading the area.
PextΔV = AV1 × (V1 – V2)
APPEARS IN
संबंधित प्रश्न
A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure 6.1. What will be the value of ∆H for the cycle as a whole?
Expansion of a gas in vacuum is called free expansion. Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vacuum until its total volume is 5 litre?
Represent the potential energy/enthalpy change in the following processes graphically.
(a) Throwing a stone from the ground to roof.
(b) \[\ce{1/2 H2(g) + 1/2 Cl2 (g) ⇌ HCl (g) Δ_rH^Θ = - 92.32 kJ mol^{-1}}\]
In which of the processes potential energy/enthalpy change is contributing factor to the spontaneity?
Match the following :
A | B |
(i) Adiabatic process | (a) Heat |
(ii) Isolated system | (b) At constant volume |
(iii) Isothermal change | (c) First law of thermodynamics |
(iv) Path function | (d) No exchange of energy and matter |
(v) State function | (e) No transfer of heat |
(vi) ΔU = q | (f) Constant temperature |
(vii) Law of conservation of energy | (g) Internal energy |
(viii) Reversible process | (h) Pext = o |
(ix) Free expansion | (i) At constant pressure |
(x) ΔH = q | (j) Infinitely slow process which proceeds through a series of equilibrium states. |
(xi) Intensive property | (k) Entropy |
(xii) Extensive property | (l) Pressure |
(m) Specific heat |
Match the following :
Column I | Column II |
(i) Entropy of vapourisation | (a) decreases |
(ii) K for spontaneous process | (b) is always positive |
(iii) Crystalline solid state | (c) lowest entropy |
(iv) ∆U in adiabatic expansion of ideal gas | (d) `(∆H_(vap))/T_b` |
1 mole of an ideal monoatomic gas initially at 1 atm and 300 K experiences a process by which pressure is doubled. The nature of the process is unspecified but 6. ΔU = 900 cal. The final volume will be ______ l.
[Given : R = 0.08 atm lit. I mol/K = 2 Cal/K/mol J]
1 mole of an ideal monoatomic gas initially at 1 atm and 300 K experiences a process by which pressure is doubled. The nature of the process is unspecified but 6. ΔU = 900 cal. The final volume will be ______ l.
[Given : R = 0.08 atm lit. I mol/K = 2 Cal/K/mol J]
Find the work done when 2 moles of hydrogen expand isothermally from 15 to 50 litres against a constant pressure of 1 atm at 25°C.
Five moles of an ideal gas at 1 bar and 298 K is expanded into the vacuum to double the volume. The work done is ______.
An ideal gas expands in volume from 1 × 10−3 to 1 × 10−2 m3 at 300 K against a constant pressure of 1 × 105 Nm−2. The work done is ______.