Advertisements
Advertisements
प्रश्न
Graphically show the total work done in an expansion when the state of an ideal gas is changed reversibly and isothermally from \[\ce{(p_i, V_i)}\] to \[\ce{(p_f , V_f )}\]. With the help of a pV plot compare the work done in the above case with that carried out against a constant external pressure \[\ce{p_f}\].
उत्तर
(i) Reversible Work is represented by the combined areas
and
(ii) Work against constant pressure, pf is represented by the area
Work (i) > Work (ii)
APPEARS IN
संबंधित प्रश्न
Expansion of a gas in vacuum is called free expansion. Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vacuum until its total volume is 5 litre?
What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, pext in a single step as shown in figure. Explain graphically.
How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?
1.0 mol of a monoatomic ideal gas is expanded from state (1) to state (2) as shown in figure. Calculate the work done for the expansion of gas from state (1) to state (2) at 298 K.
Match the following :
A | B |
(i) Adiabatic process | (a) Heat |
(ii) Isolated system | (b) At constant volume |
(iii) Isothermal change | (c) First law of thermodynamics |
(iv) Path function | (d) No exchange of energy and matter |
(v) State function | (e) No transfer of heat |
(vi) ΔU = q | (f) Constant temperature |
(vii) Law of conservation of energy | (g) Internal energy |
(viii) Reversible process | (h) Pext = o |
(ix) Free expansion | (i) At constant pressure |
(x) ΔH = q | (j) Infinitely slow process which proceeds through a series of equilibrium states. |
(xi) Intensive property | (k) Entropy |
(xii) Extensive property | (l) Pressure |
(m) Specific heat |
Match the following :
Column I | Column II |
(i) Entropy of vapourisation | (a) decreases |
(ii) K for spontaneous process | (b) is always positive |
(iii) Crystalline solid state | (c) lowest entropy |
(iv) ∆U in adiabatic expansion of ideal gas | (d) `(∆H_(vap))/T_b` |
For silver Cp (J K-1 mol-1) = 23 + 0.01 T. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atom pressure, the value of ΔH will be close to ______.
1 mole of an ideal monoatomic gas initially at 1 atm and 300 K experiences a process by which pressure is doubled. The nature of the process is unspecified but 6. ΔU = 900 cal. The final volume will be ______ l.
[Given : R = 0.08 atm lit. I mol/K = 2 Cal/K/mol J]
Five moles of an ideal gas at 1 bar and 298 K is expanded into the vacuum to double the volume. The work done is ______.
An ideal gas expands in volume from 1 × 10−3 to 1 × 10−2 m3 at 300 K against a constant pressure of 1 × 105 Nm−2. The work done is ______.