Advertisements
Advertisements
प्रश्न
A vector \[\vec{r}\] is inclined to -axis at 45° and y-axis at 60°. If \[|\vec{r}|\] = 8 units, find \[\vec{r}\].
उत्तर
Here, \[\vec{r}\] makes an angle \[45^{\circ}\] with OX and \[60^{\circ}\] with OY.
So,
\[l = \cos 45^{\circ} = \frac{1}{\sqrt{2}}\text{ and }m = \cos 60^{\circ} = \frac{1}{2}\]
\[\text{ Now, }l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow \frac{1}{2} + \frac{1}{4} + n^2 = 1\]
\[ \Rightarrow n^2 = \frac{1}{4}\]
\[ \Rightarrow n = \pm \frac{1}{2}\]
Therefore,
\[\vec{r} = \left| \vec{r} \right| \left( l \hat{i} + m \hat{j} + n \hat{k} \right)\]
\[ = 8 \left( \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{2} \hat{j} \pm \frac{1}{2} \hat{k} \right)\]
\[ = 4 \left( \sqrt{2} \hat{i} + \hat{j} \pm \hat{k} \right)\]
APPEARS IN
संबंधित प्रश्न
Can a vector have direction angles 45°, 60°, 120°?
Prove that 1, 1, 1 cannot be direction cosines of a straight line.
A vector makes an angle of \[\frac{\pi}{4}\] with each of x-axis and y-axis. Find the angle made by it with the z-axis.
A vector \[\vec{r}\] is inclined at equal acute angles to x-axis, y-axis and z-axis.
If |\[\vec{r}\]| = 6 units, find \[\vec{r}\].
Find the direction cosines of the following vectors:
\[2 \hat{i} + 2 \hat{j} - \hat{k}\]
Find the direction cosines of the following vectors:
\[6 \hat{i} - 2 \hat{j} - 3 \hat{k}\]
Find the direction cosines of the following vectors:
\[3 \hat{i} - 4 \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{i} - \hat{j} + \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[4 \hat{i} + 8 \hat{j} + \hat{k}\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined with the axes OX, OY and OZ.
Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are \[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} .\]
Write the direction cosines of the vector \[\overrightarrow{r} = 6 \hat{i} - 2 \hat{j} + 3 \hat{k} .\]
A unit vector \[\overrightarrow{r}\] makes angles \[\frac{\pi}{3}\] and \[\frac{\pi}{2}\] with \[\hat{j}\text{ and }\hat{k}\] respectively and an acute angle θ with \[\hat{i}\]. Find θ.
Write two different vectors having same direction.
Write the direction cosines of the vector \[\hat{i} + 2 \hat{j} + 3 \hat{k}\].
Write the direction cosines of the vectors \[- 2 \hat{i} + \hat{j} - 5 \hat{k}\].
The vector cos α cos β \[\hat{i}\] + cos α sin β \[\hat{j}\] + sin α \[\hat{k}\] is a
Find the acute angle between the planes `vec"r". (hat"i" - 2hat"j" - 2hat"k") = 1` and `vec"r". (3hat"i" - 6hat"j" - 2hat "k") = 0`
If a line makes angles 90°, 45°, 135° with the X, Y and Z axes respectively, then its direction cosines are
The direction co-sines of the line which bisects the angle between positive direction of Y and Z axes are ______.
The direction cosines of a line which is perpendicular to lines whose direction ratios are 3, - 2, 4 and 1, 3, - 2 are ______.
Which of the following can not be the direction cosines of a line?
The direction cosines of a line which is perpendicular to both the lines whose direction ratios are -2, 1, -1 and -3, -4, 1 are ______
The angle between the lines whose direction cosines satisfy the equations l + m + n = 0 and l2 = m2 + n2 is ______.
Find the direction cosines of the following line:
`(3 - x)/(-1) = (2y - 1)/2 = z/4`