मराठी

A Vector → R is Inclined at Equal Acute Angles to X-axis, Y-axis and Z-axis. If | → R | = 6 Units, Find → R . - Mathematics

Advertisements
Advertisements

प्रश्न

A vector \[\vec{r}\] is inclined at equal acute angles to x-axis, y-axis and z-axis.
If |\[\vec{r}\]| = 6 units, find \[\vec{r}\].

उत्तर

Suppose, vector \[\vec{r}\] makes an angle \[\alpha\] with each of the axis OX, OY and OZ.
Then, its direction cosines are \[l = \cos \alpha , m = \cos \alpha\] and \[n = \cos \alpha\] i.e. \[l = m = n .\]
\[\text{ Now, }l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow l^2 + l^2 + l^2 = 1\]
\[ \Rightarrow 3 l^2 = 1\]
\[ \Rightarrow l^2 = \frac{1}{3}\]
\[ \Rightarrow l = \pm \frac{1}{\sqrt{3}}\]
\[\text{ Since, }\vec{r}\text{ makes acute angle with the axis .} \]
Hence, we take only positive value . 
Therefore,  

\[\vec{r} = \left| \vec{r} \right| \left( l \hat{i} + m \hat{j} + n \hat{k} \right)\]

\[ \vec{r} = 6 \left( \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right)\]

\[ = 2\sqrt{3} \left( \hat{i} + \hat{j} + \hat{k} \right)\]

shaalaa.com
Direction Cosines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Algebra of Vectors - Exercise 23.9 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 23 Algebra of Vectors
Exercise 23.9 | Q 4 | पृष्ठ ७३

संबंधित प्रश्‍न

Prove that 1, 1, 1 cannot be direction cosines of a straight line.


A vector makes an angle of \[\frac{\pi}{4}\] with each of x-axis and y-axis. Find the angle made by it with the z-axis.


A vector \[\vec{r}\] is inclined to -axis at 45° and y-axis at 60°.  If \[|\vec{r}|\] = 8 units, find \[\vec{r}\].


Find the direction cosines of the following vectors:
\[2 \hat{i} + 2 \hat{j} - \hat{k}\]


Find the direction cosines of the following vectors:
\[3 \hat{i} - 4 \hat{k}\]


Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{i} - \hat{j} + \hat{k}\]


Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[4 \hat{i} + 8 \hat{j} + \hat{k}\]


Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are \[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} .\]


A unit vector \[\overrightarrow{r}\] makes angles \[\frac{\pi}{3}\] and \[\frac{\pi}{2}\] with \[\hat{j}\text{ and }\hat{k}\]  respectively and an acute angle θ with \[\hat{i}\]. Find θ.


What is the cosine of the angle which the vector \[\sqrt{2} \hat{i} + \hat{j} + \hat{k}\] makes with y-axis?


Write two different vectors having same direction.


Write the direction cosines of the vector \[\hat{i} + 2 \hat{j} + 3 \hat{k}\].


Write the direction cosines of the vectors \[- 2 \hat{i} + \hat{j} - 5 \hat{k}\].


The vector cos α cos β \[\hat{i}\] + cos α sin β \[\hat{j}\] + sin α \[\hat{k}\] is a


If a line makes angles 90°, 45°, 135° with the X, Y and Z axes respectively, then its direction cosines are


The cosine of the angle included between the lines r = `(2hat"i" + hat"j" - 2hat"k") + lambda (hat"i" - 2hat"j" - 2hat"k")` and r = `(hat"i" + hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" - 6hat"k")` where λ, μ ∈ R is.


The direction cosines of a line which is perpendicular to lines whose direction ratios are 3, - 2, 4 and 1, 3, - 2 are ______.


Direction cosines of the line `(x + 2)/2 = (2y - 5)/3`, z = -1 are ______ 


A line lies in the XOZ plane and it makes an angle of 60° with the X-axis. Then its direction cosines are ______


Which of the following can not be the direction cosines of a line?


The direction cosines of a line which is perpendicular to both the lines whose direction ratios are -2, 1, -1 and -3, -4, 1 are ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×