मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

ΔABC is isosceles in which AB = AC. Seg BD and seg CE are medians. Show that BD = CE. - Geometry

Advertisements
Advertisements

प्रश्न

ΔABC is isosceles in which AB = AC. Seg BD and seg CE are medians. Show that BD = CE.

बेरीज

उत्तर

Point D is the midpoint of line AC.  

∴ AD = DC = `1/2` AC     ...(1)

AE = EB = `1/2`AB     ...(2)

AB = AC

Multiplying both sides by `1/2`

`1/2 "AB" = 1/2 "AC"`   ...(3)

∴ AE = AD            ...[(1), (2) and (3)]   ...(4)

In, ΔBAD and ΔCAE

seg AB ≅ seg AC      ...(Given)

∠BAD ≅ ∠CAE      ...(Common side)

seg AE ≅ seg AD      ...(From 4)

∴ ΔBAD ≅ ΔCAE     ...(Congruence of SAS test)

∴ seg BD ≅ seg CE

∴ BD = CE

shaalaa.com
Isosceles Triangles Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Triangles - Problem Set 3 [पृष्ठ ४९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
पाठ 3 Triangles
Problem Set 3 | Q 2. | पृष्ठ ४९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×