Advertisements
Advertisements
प्रश्न
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`("A"(Delta"ADC"))/("A"(Delta"ABC"))`
उत्तर
AE ⊥ BC काढा, B−E−C
BC = BD + DC ...[B−D−C]
∴ 20 = 7 + DC
∴ DC = 20 − 7 = 13
∆ADC आणि ∆ABC ची AE ही समान उंची आहे.
`("A"(Delta"ADC"))/("A"(Delta"ABC")) = "DC"/"BC"` .......[समान उंचीचे त्रिकोण]
`("A"(Delta"ADC"))/("A"(Delta"ABC")) = 13/20`
APPEARS IN
संबंधित प्रश्न
दिलेल्या आकृती मध्ये BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8 तर `("A(ΔABC)")/("A(ΔADB)")` काढा.
दिलेल्या आकृतीत AP ⊥ BC, AD || BC, तर A(Δ ABC) : A(Δ BCD) काढा.
ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर `("A"(Δ"MNT"))/("A"Δ("QRS"))` हे गुणोत्तर काढा.
जर ∆XYZ ~ ∆PQR, तर `"XY"/"PQ" = "YZ"/"QR"` = ?
दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर 144:49 असेल, तर त्या त्रिकोणांच्या संगत बाजूंचे गुणोत्तर किती?
∆PQR ~ ∆SUV, तर त्या त्रिकोणाच्या एकरूप कोनांच्या जोड्या लिहा.
आकृतीमध्ये TP = 10 सेमी, PS = 6 सेमी. `("A"(Delta"RTP"))/("A"(Delta"RPS"))` = ?
आकृतीमध्ये, AB लंब BC आणि DC लंब BC, AB = 6, DC = 4, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` = ?
त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते. सिद्धता पूर्ण करा.
पक्ष: ∆ABC मध्ये रेषा l || बाजू BC आणि रेषा l ही बाजू AB ला P मध्ये व बाजू AC ला Q मध्ये छेदते.
साध्य: `"AP"/"PB" = "AQ"/"QC"`
रचना: रेख CP व रेख BQ काढा.
सिद्धता:
∆APQ व ∆PQB हे समान उंचीचे त्रिकोण आहेत.
`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `square/"PB"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (i)
`("A"(Delta"APQ"))/("A"(Delta"PQC")` = `square/"QC"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (ii)
∆PQC व ∆PQB यांचा रेख `square` हा समान पाया आहे.
रेख PQ || रेख BC म्हणून: ∆∆APQ व ∆PQB यांची उंची समान आहे.
A(∆PQC) = A(∆ `square`) ........….(iii)
`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `("A"(∆ square))/("A"(∆ square))` ..............[(i), (ii) व (iii]
`"AP"/"PB" = "AQ"/"QC"` ......….[(i) व (ii) वरून]
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`(A(∆ABD))/(A(∆ABC))`