Advertisements
Advertisements
प्रश्न
ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर `("A"(Δ"MNT"))/("A"Δ("QRS"))` हे गुणोत्तर काढा.
उत्तर
ΔMNT ~ ΔQRS ...[पक्ष]
∴ ∠M ≅ ∠Q .....(i) [समरूप त्रिकोणांचे संगत कोन]
ΔMLT व ΔQPS मध्ये,
∠M ≅ ∠Q .....[(i) वरून]
∠MLT ≅ ∠QPS ....[प्रत्येक कोनाचे माप 90°]
∴ ΔMLT ~ ΔQPS ...[समरूपतेची कोको कसोटी]
∴ `"MT"/"QS" = "TL"/"SP"` ....[समरूप त्रिकोणांच्या संगत बाजू]
∴ `"MT"/"QS" = 5/9` ...(ii)
आता, ΔMNT ~ ΔQRS ...[पक्ष]
∴ `("A"(Δ"MNT"))/("A"(Δ"QRS")) = "MT"^2/"QS"^2` ..[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]
= `("MT"/"QS")^2`
= `(5/9)^2` ....[(ii) वरून]
∴ `("A"(Δ"MNT"))/("A"(Δ"QRS")) = 25/81`
APPEARS IN
संबंधित प्रश्न
एका त्रिकोणाचा पाया 9 आणि उंची 5 आहे. दुसऱ्या त्रिकोणाचा पाया 10 आणि उंची 6 आहे, तर त्या त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर काढा.
दिलेल्या आकृतीत AP ⊥ BC, AD || BC, तर A(Δ ABC) : A(Δ BCD) काढा.
दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा.
i) `"A(ΔPQB)"/"A(ΔPBC)"`
ii) `"A(ΔPBC)"/"A(ΔABC)"`
iii) `"A(ΔABC)"/"A(ΔADC)"`
iv) `"A(ΔADC)"/"A(ΔPQC)"`
आकृती मध्ये ∠ABC = ∠DCB = 90° AB = 6, DC = 8 तर `("A"(Δ"ABC"))/("A"(Δ"DCB"))` = किती?
∆PQR ~ ∆SUV, तर त्या त्रिकोणाच्या एकरूप कोनांच्या जोड्या लिहा.
∆ABC ~ ∆DEF, तर प्रमाणात असणाऱ्या संगत बाजू लिहा.
आकृतीमध्ये, AB लंब BC आणि DC लंब BC, AB = 6, DC = 4, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` = ?
आकृतीमध्ये, दिलेल्या माहितीवरून ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` किती?
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`(A(∆ABD))/(A(∆ABC))`
∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.
`("A"(Delta"ADC"))/("A"(Delta"ABC"))`