मराठी

Abcd Are Four Points in a Plane and Q is the Point of Intersection of the Lines Joining the Mid-points of Ab and Cd; Bc and Ad. Show that - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.

थोडक्यात उत्तर

उत्तर


Let E, F, G and H are the midpoints of the sides AB, BC, CD and DA respectively of say quadrilateral ABCD.  By geometry of the figure formed by joining the midpoints E, F, Gand H will be a parallelogram. Hence its diagonals will bisect each other, say at Q.
Now, F is the midpoint of BC.
\[\frac{\overrightarrow{PB}+ \overrightarrow{PC}}{2} = \overrightarrow {PF} \]
\[ \therefore\overrightarrow {PB} +\overrightarrow {PC} = 2 \overrightarrow {PF} . . . . . \left( 1 \right)\]
And, H is the midpoint of AD.
\[\frac{\overrightarrow {PB} + \overrightarrow {PC}}{2} =\overrightarrow {PF} \]
\[ \therefore\overrightarrow {PB} + \overrightarrow{PC} = 2 \overrightarrow {PF} . . . . . \left( 1 \right)\]
Adding (1) and (2). We get,
\[\overrightarrow{PA} +\overrightarrow {PB}+ \overrightarrow{PC}^ + \overrightarrow {PD} = 2( \overrightarrow {PF} + \overrightarrow {PH} ) = 2 (2\overrightarrow {PQ} ) = 4 \overrightarrow{PQ} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Algebra of Vectors - Exercise 23.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 23 Algebra of Vectors
Exercise 23.4 | Q 5 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the values of x and y so that the vectors `2hati + 3hatj and xhati  + yhatj` are equal.


Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (–5, 7).


Find the sum of the vectors `veca = hati -2hatj + hatk, vecb = -2hati + 4hatj + 5hatk and vecc = hati - 6hatj - 7hatk.`


In triangle ABC, which of the following is not true:


If `veca` and `vecb` are two collinear vectors, then which of the following are incorrect:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


If `veca = vecb + vecc`, then is it true that `|veca| = |vecb| + |vecc|`? Justify your answer.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]


ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = \overrightarrow{0}\]


Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.


ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]


Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


`[(bar"a", bar"b" + bar"c", bar"a" + bar"b" + bar"c")]` = ______.


Let the position vectors of the points A, Band C be `veca, vecb` and `vecc` respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then `vec(QA) + vec(QB) + vec(QC)` =


`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to


ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×