Advertisements
Advertisements
प्रश्न
ABCD एक चतुर्भुज है, जिसमें AD = BC और ∠DAB = ∠CBA है (देखिए आकृति)। सिद्ध कीजिए कि:
- △ABD ≌ △BAC
- BD = AC
- ∠ABD = ∠BAC
उत्तर
चतुर्भुज ABCD में,
AD = BC और ∠DAB = ∠CBA
i. ΔABD और ΔBAC में,
AD = BC ...[दिया गया है।]
∠DAB = ∠CBA ...[दिया गया है।]
AB = BA ...[उभयनिष्ठ]
∴ ΔABD ≅ ΔBAC ...[SAS सर्वांगसमता द्वारा]
ii. चूँकि, ΔABD ≅ ΔBAC
BD = AC ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]
iii. चूँकि, ΔABD ≅ ΔBAC
∠ABD = ∠BAC ...[सर्वांगसम त्रिभुजों के संगत भागों द्वारा]
APPEARS IN
संबंधित प्रश्न
चतुर्भुज ABCD में, AC = AD है और AB, कोण A को समद्विभाजित करता है (देखिए आकृति)। दर्शाइए कि △ABC ≌ △ABD है। BC और BD के बारे में आप क्या कह सकते हैं?
आकृति में दो त्रिभुज ART तथा OWN सर्वांगसम हैं जिसके संगत भागो को अंकित किया गया है। हम लिख सकते है △RAT ≅ ?
कथनों को पूरा कीजिए:
ΔBCA ≅?
∆QRS ≅ ?
एक वर्गांकित शीट पर, बराबर क्षेत्रफलों वाले दो त्रिभुजों को इस प्रकार बनाइए कि त्रिभुज सर्वांगसम न हों।
आप उनके परिमाप के बारे में क्या कह सकते हैं?
∆ABC में, BC = AB और ∠B = 80° है, तब ∠A बराबर है
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। प्रत्येक जोड़ी के त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔPRQ ≅ ΔSTU
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔLMN ≅ ΔPTR
नीचे दिए गए त्रिभुज की जोड़िय में दर्शाई गई जानकारी का निरीक्षण कीजिए । वे त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं । शेष सर्वांगसम घटक भी लिखिए ।
आकृति में दर्शाई गई जानकारी के आधार पर,
ΔPTQ तथा ΔSTR में
रेख PT ≅ रेख ST
∠PTQ ≅ ∠STR ...शीर्षाभिमुख कोण
रेख TQ ≅ रेख TR
∴ ΔPTQ ≅ ΔSTR .... `square` कसौटी
∴ `{:(∠"TPQ" ≅ square),(व square ≅ ∠"TRS"):}}` ...सर्वांगसम त्रिभुज के संगत कोण
रेख PQ ≅ `square` ...सर्वांगसम त्रिभुज की संगत भुजाएँ
नीचे दी गई आकृति में दर्शाए अनुसार ΔLMN तथा ΔPNM में LM = PN, LN = PM हो तो त्रिभुजों की सर्वांगसमता की कसौटी लिखिए । शेष सर्वांगसम घटकों के नाम भी लिखिए ।
निचे दी गई आकृति के आधार पर ∠P ≅ ∠R, रेख PQ ≅ रेख QR, तो सिद्ध कीजिए कि, ΔPQT ≅ ΔRQT