Advertisements
Advertisements
प्रश्न
चतुर्भुज ABCD में, AC = AD है और AB, कोण A को समद्विभाजित करता है (देखिए आकृति)। दर्शाइए कि △ABC ≌ △ABD है। BC और BD के बारे में आप क्या कह सकते हैं?
उत्तर
दिया है: चतुर्भुज ABCD में, AC = AD और AB, ∠A को समद्विभाजित करता है।
सिद्ध करना है: △ABC ≌ △ABD
उपपत्ति: △ABC और △ABD में,
AC = AD ...[दिया है]
∠BAC = ∠BAD ...[∵ AB, ∠A को समद्विभाजित करता है। दिया है]
AB = AB ...[उभयनिष्ठ]
∴ △ABC ≌ △ABD ...[SAS सर्वांगसमता नियम द्वारा]
अत: BC = BD ...[सर्वांगसम त्रिभुजों के संगत भाग]
APPEARS IN
संबंधित प्रश्न
आकृति में दो त्रिभुज ART तथा OWN सर्वांगसम हैं जिसके संगत भागो को अंकित किया गया है। हम लिख सकते है △RAT ≅ ?
कथनों को पूरा कीजिए:
ΔBCA ≅?
∆QRS ≅ ?
∆ABC में, AB = AC और ∠B = 50° है, तब ∠C बराबर है
एक त्रिभुज की दो भुजाओं की लंबाइयाँ 5 cm और 1.5 cm हैं। इस त्रिभुज की तीसरी भुजा की लंबाई निम्नलिखित नहीं हो सकती ______
∆PQR में, यदि ∠R > ∠Q है, तो ______
नीचे दिए गए उदाहरण में त्रिभुजों की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं जोड़ी के त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔXYZ ≅ ΔLMN
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। प्रत्येक जोड़ी के त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔPRQ ≅ ΔSTU
नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं। त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।
______ कसौटी से
ΔLMN ≅ ΔPTR
नीचे दिए गए त्रिभु की जोड़ि में दर्शाई गई जानकारी का निरीक्षण कीजिए । वे त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं शेष सर्वांगसम घटक भी लिखिए ।
आकृति में दर्शाई गई जानकारी के आधार पर,
ΔABC तथा ΔPQR में
∠ABC ≅ ∠PQR
रेख BC ≅ रेख QR
∠ACB ≅ ∠PQR
∴ ΔABC ≅ ΔPQR........... `square` कसौटी
∴ ∠BAC ≅ `square` ....... सर्वांगसम त्रिभुजों के संगत कोण
रेख AB ≅ `square` तथा `square` ≅ रेख PR .....सर्वांगसम त्रिभुज की संगत भुजाएँ
नीचे दिए गए त्रिभुज की जोड़िय में दर्शाई गई जानकारी का निरीक्षण कीजिए । वे त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं । शेष सर्वांगसम घटक भी लिखिए ।
आकृति में दर्शाई गई जानकारी के आधार पर,
ΔPTQ तथा ΔSTR में
रेख PT ≅ रेख ST
∠PTQ ≅ ∠STR ...शीर्षाभिमुख कोण
रेख TQ ≅ रेख TR
∴ ΔPTQ ≅ ΔSTR .... `square` कसौटी
∴ `{:(∠"TPQ" ≅ square),(व square ≅ ∠"TRS"):}}` ...सर्वांगसम त्रिभुज के संगत कोण
रेख PQ ≅ `square` ...सर्वांगसम त्रिभुज की संगत भुजाएँ