मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD.

बेरीज

उत्तर

ABCD is a quadrilateral. AB = AD.

AE and AF are the internal bisector of ∠BAC and ∠DAC

.
To prove: EF || BD.

Construction: Join EF and BD

Proof: In ∆ ABC, AE is the internal bisector of ∠BAC.

By Angle bisector theorem, we have,

∴ `"AB"/"AC" = "BE"/"EC"` ...(1)

In ∆ ADC, AF is the internal bisector of ∠DAC

By Angle bisector theorem, we have,

`"AD"/"AC"= "DF"/"FC"`

∴ `"AB"/"AC" = "DF"/"FC"` ...(AB = AD given) ...(2)

From (1) and (2), we get,

`"BE"/"EC" = "DF"/"FC"`

Hence in ∆ BCD,

BD || EF ...(by converse of BPT)

shaalaa.com
Thales Theorem and Angle Bisector Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Geometry - Exercise 4.2 [पृष्ठ १८२]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 4 Geometry
Exercise 4.2 | Q 10 | पृष्ठ १८२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×