मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता १०

In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC If AD = 8x – 7, DB = 5x – 3, AE = 4x – 3 and EC = 3x – 1, find the value of x - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 8x – 7, DB = 5x – 3, AE = 4x – 3 and EC = 3x – 1, find the value of x

बेरीज

उत्तर

Given AD = 8x – 7; BD = 5x – 3; AE = 4x – 3; EC = 3x – 1

In ∆ABC we have DE || BC

By Basic proportionality theorem

`"AD"/"DB" = "AE"/"EC"`

`(8x - 7)/(5x - 3) = (4x - 3)/(3x - 1)`

(8x – 7) (3x – 1) = (4x – 3) (5x – 3)

24x2 – 8x – 21x + 7 = 20x2 – 12x – 15x + 9

24x2 – 20x2 – 29x + 27x + 7 – 9 = 0

4x2 – 2x – 2 = 0

2x2 – x – 1 = 0   ...(Divided by 2)

2x2 – 2x + x – 1 = 0

2x(x – 1) + 1 (x – 1) = 0

(x – 1) (2x + 1) = 0

x – 1 = 0 or 2x + 1 = 0

x = 1 or 2x = – 1 ⇒ x = `– 1/2` ...(Negative value will be omitted)

The value of x = 1

shaalaa.com
Thales Theorem and Angle Bisector Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Geometry - Exercise 4.2 [पृष्ठ १८१]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 4 Geometry
Exercise 4.2 | Q 1. (ii) | पृष्ठ १८१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×