मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

An electron is accelerated through a potential of 120 V. Find its de Broglie wavelength. - Physics

Advertisements
Advertisements

प्रश्न

An electron is accelerated through a potential of 120 V. Find its de Broglie wavelength.

बेरीज

उत्तर

Given: V = 120 V

To find: de Broglie wavelength of the electron

Formula: λ (in nm) = `1.228/sqrt"V"`

Calculation:

From formula,

`lambda = 1.228/sqrt(120)`

= antilog {log (1.228) – 0.5 × log (120)}

= antilog {0.0892 – 0.5 × 2.0792}

= antilog {`overline1`.0496} = 0.1121 nm

The de Broglie wavelength of the electron is 0.1121 nm.  

shaalaa.com
De Broglie Hypothesis
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Dual Nature Of Radiation And Matter - Short Answer I

संबंधित प्रश्‍न

An electron, a proton, an α-particle, and a hydrogen atom are moving with the same kinetic energy. The associated de Broglie wavelength will be longest for ______.


State the importance of Davisson and Germer experiment.


The de Broglie wavelengths associated with an electron and a proton are the same. What will be the ratio of (i) their momenta (ii) their kinetic energies?


Two particles have the same de Broglie wavelength and one is moving four times as fast as the other. If the slower particle is an α-particle, what are the possibilities for the other particle?


Find the ratio of the de Broglie wavelengths of an electron and a proton when both are moving with the (a) same speed, (b) the same kinetic energy, and (c) the same momentum. State which of the two will have a longer wavelength in each case.


According to De-Broglie, the waves are associated with ______ 


Calculate De Broglie's wavelength of the bullet moving with speed 90m/sec and having a mass of 5 gm. 


Explain De Broglie’s Hypothesis.


If the radius of the innermost Bohr orbit is 0.53 Å, the radius of the 4th orbit is ______


According to de-Broglie hypothesis, the wavelength associated with moving electron of mass 'm' is 'λe'· Using mass energy relation and Planck's quantum theory, the wavelength associated with photon is  'λp'. If the energy (E) of electron and photon is same then relation between 'λe' and 'λp' is ______.


What is the momentum of a photon having frequency 1.5 x 1013 Hz?


If the radius of the circular path and frequency of revolution of a particle of mass m are doubled, then the change in its kinetic energy will be (Ei and Ef are the initial and final kinetic energies of the particle respectively.)


How much energy is imparted to an electron so that its de-Broglie wavelength reduces from 10-10 m to 0.5 × 10-10 m? (E =energy of electron)


If '`lambda_1`' and '`lambda_2`' are de-Broglie wavelengths for electrons in first and second Bohr orbits in hydrogen atom, then the ratio '`lambda_2`' to '`lambda_1`' is (E1 = -13.6 eV) ____________.


Graph shows the variation of de-Broglie wavelength `(lambda)` versus `1/sqrt"V"`, where 'V' is the accelerating potential for four particles carrying same charge but of masses m1 , m2, m3, m4. Which particle has a smaller mass?


According to de-Broglie hypothesis, the ratio of wavelength of an electron and that of photon having same energy 'E' is (m = mass of electron, c = velocity of light) ____________.


Obtain an expression for de-Broglie wavelength of wave associated with material particles. The photoelectric work function for metal is 4.2 eV. Find the threshold wavelength.


A proton, a neutron, an electron and an α-particle have same energy. λp, λn, λe and λα are the de Broglie's wavelengths of proton, neutron, electron and α particle respectively, then choose the correct relation from the following :


The energy of an electron having de-Broglie wavelength `λ` is ______.

(h = Plank's constant, m = mass of electron)


An electron of mass m has de-Broglie wavelength λ when accelerated through potential difference V. When proton of mass M, is accelerated through potential difference 9V, the de-Broglie wavelength associated with it will be ______. (Assume that wavelength is determined at low voltage)


An electron is accelerated through a potential difference of 100 volts. Calculate de-Broglie wavelength in nm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×