Advertisements
Advertisements
प्रश्न
Answer in brief:
Why are curved roads banked?
उत्तर
When an car makes a turn, it moves in a circular manner. The necessary centripetal force is the static friction force between the car tyres and the road surface if the road is level (or horizontal). The amount of friction is determined by the nature of the surfaces that come into contact, as well as the presence of oil and water on the road. If the friction is insufficient, a speeding car may skid off the road. Because friction varies depending on the situation, it cannot be relied upon to generate the required centripetal force. Furthermore, friction causes rapid tyre wear and tear.
To lesser the risk of sliding and the wear and tear on car tyres, the road surface at a bend is tilted inward, i.e., the outer side of the road is raised over the inner side. This is known as road banking. On a banked road, the result of the normal reaction and gravitational force can serve as the required centripetal force. As a result, any car can be driven safely on such a banked curve at an ideal speed without relying on friction. As a result, at a bend, a road should be correctly banked. The angle of banking is the angle of inclination of a banked road's surface at its end with the horizontal.
APPEARS IN
संबंधित प्रश्न
A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is ______.
On what factors does the frequency of a conical pendulum depend? Is it independent of some factors?
While driving along an unbanked circular road, a two-wheeler rider has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression. Why such a leaning is not necessary for a four wheeler?
Answer in Brief:
A flywheel used to prepare earthenware pots is set into rotation at 100 rpm. It is in the form of a disc of mass 10 kg and a radius 0.4 m. A lump of clay (to be taken equivalent to a particle) of mass 1.6 kg falls on it and adheres to it at a certain distance x from the center. Calculate x if the wheel now rotates at 80 rpm.
Starting from rest, an object rolls down along an incline that rises by 3 in every 5 (along with it). The object gains a speed of `sqrt10` m/s as it travels a distance of `5/3` m along the incline. What can be the possible shape/s of the object?
A big dumb-bell is prepared by using a uniform rod of mass 60 g and length 20 cm. Two identical solid spheres of mass 25 g and radius 10 cm each are at the two ends of the rod. Calculate the moment of inertia of the dumb-bell when rotated about an axis passing through its centre and perpendicular to the length.
Does the angle of banking depend on the mass of the vehicle?
A hollow sphere has a radius of 6.4 m. what is the minimum velocity required by a motorcyclist at the bottom to complete the circle.
A bend in a level road has a radius of 100m. find the maximum speed which a car turning this bend may have without skidding if the coefficient of friction between the tires and road is 0.8.
A bucket containing water is tied to one end of a rope 5 m long and it is rotated in a vertical circle about the other end. Find the number of rotations per minute in order that the water in the bucket may not spill.
A body weighing 0.5 kg tied to a string is projected with a velocity of 10 m/s. The body starts whirling in a vertical circle. If the radius of the circle is 0.8 m, find the tension in the string when the body is at the top of the circle.
Derive an expression for the kinetic energy of a rotating body with uniform angular velocity.
What is a conical pendulum? Obtain an expression for its time period
A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes, ______
A particle undergoes uniform circular motion. The angular momentum of the particle remains conserved about, ______
Give any two examples of torque in day-to-day life.
What is the relation between torque and angular momentum?
What are the rotational equivalents for the physical quantities, (i) mass and (ii) force?
A flywheel rotates with uniform angular acceleration. If its angular velocity increases from `20pi` rad/s to `40pi` rad/s in 10 seconds. Find the number of rotations in that period.
A wheel of radius 2 cm is at rest on the horizontal surface. A point P on the circumference of the wheel is in contact with the horizontal surface. When the wheel rolls without slipping on the surface, the displacement of point P after half rotation of wheel is ______.
What is the difference between rotation and revolution?