Advertisements
Advertisements
प्रश्न
Do we need a banked road for a two-wheeler? Explain.
उत्तर
The force of friction produces the centripetal force when a two-wheeler makes a turn on an unbanked road. To counterbalance a torque that would cause it to tumble outward, the two-wheeler leans inward. For starters, friction alone cannot supply the required centripetal force in all road conditions. The friction, on the other hand, causes tyre wear and tear. Any vehicle can navigate a turn on a banked road without relying on friction or putting strain on the tyres.
So, the Banking of road provides the centripetal force at curved surface.
Hence we need a banked road for a two wheeler.
संबंधित प्रश्न
A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is ______.
On what factors does the frequency of a conical pendulum depend? Is it independent of some factors?
While driving along an unbanked circular road, a two-wheeler rider has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression. Why such a leaning is not necessary for a four wheeler?
Somehow, an ant is stuck to the rim of a bicycle wheel of diameter 1 m. While the bicycle is on a central stand, the wheel is set into rotation and it attains the frequency of 2 rev/s in 10 seconds, with uniform angular acceleration. Calculate:
- The number of revolutions completed by the ant in these 10 seconds.
- Time is taken by it for first complete revolution and the last complete revolution.
Starting from rest, an object rolls down along an incline that rises by 3 in every 5 (along with it). The object gains a speed of `sqrt10` m/s as it travels a distance of `5/3` m along the incline. What can be the possible shape/s of the object?
A big dumb-bell is prepared by using a uniform rod of mass 60 g and length 20 cm. Two identical solid spheres of mass 25 g and radius 10 cm each are at the two ends of the rod. Calculate the moment of inertia of the dumb-bell when rotated about an axis passing through its centre and perpendicular to the length.
Does the angle of banking depend on the mass of the vehicle?
During ice ballet, while in the outer rounds, why do the dancers outstretch their arms and legs.
A hollow sphere has a radius of 6.4 m. what is the minimum velocity required by a motorcyclist at the bottom to complete the circle.
A bend in a level road has a radius of 100m. find the maximum speed which a car turning this bend may have without skidding if the coefficient of friction between the tires and road is 0.8.
Derive an expression for maximum safety speed with which a vehicle should move along a curved horizontal road. State the significance of it.
Derive an expression for the kinetic energy of a rotating body with uniform angular velocity.
A railway track goes around a curve having a radius of curvature of 1 km. The distance between the rails is 1 m. Find the elevation of the outer rail above the inner rail so that there is no side pressure against the rails when a train goes around the curve at 36 km/hr.
Obtain an expression for maximum safety speed with which a vehicle can be safely driven along a curved banked road.
A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes, ______
A particle undergoes uniform circular motion. The angular momentum of the particle remains conserved about, ______
What are the rotational equivalents for the physical quantities, (i) mass and (ii) force?
A flywheel rotates with uniform angular acceleration. If its angular velocity increases from `20pi` rad/s to `40pi` rad/s in 10 seconds. Find the number of rotations in that period.
A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature to a certain value, its speed of rotation ______.
A wheel of radius 2 cm is at rest on the horizontal surface. A point P on the circumference of the wheel is in contact with the horizontal surface. When the wheel rolls without slipping on the surface, the displacement of point P after half rotation of wheel is ______.
A ring and a disc of different masses are rotating with the same kinetic energy. If we apply a retarding torque τ on the ring, it stops after completing n revolution in all. If the same torque is applied to the disc, how many revolutions would it complete in all before stopping?
What is the difference between rotation and revolution?