मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Find whether the following function is onto or not. f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z

बेरीज

उत्तर

f(x) = 6x – 7 = y (say)

(x , y ∈ Z)

∴ x = `(7 + y)/6`

Since, every integer y does not give integer x.

∴ f is not onto.

shaalaa.com
Algebra of Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (3) (i) | पृष्ठ १३०

संबंधित प्रश्‍न

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 5x2


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} > 4


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

`[x/2] + [x/3] = (5x)/6`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


Answer the following:

Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______ 


If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______ 


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×