मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Find whether the following function is one-one f : R − {3} → R defined by f(x) = 5x+7x-3 for x ∈ R − {3} - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}

बेरीज

उत्तर

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)`

Let f(a) = f(b)

∴ `(5"a" + 7)/("a" - 3) = (5"b" + 7)/("b" - 3)`

∴ (5a + 7)(b – 3) = (a – 3)(5b + 7)

∴ 5ab – 15a + 7b – 21 = 5ab + 7a – 15b – 21

∴ – 22a = – 22b

∴ a = b

∴ f(a) = f(b) ⇒ a = b

∴ f is one-one.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (2) (ii) | पृष्ठ १३०

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


If f(m) = m2 − 3m + 1, find f(x + 1)


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Find the domain of f(x) = ln (x − 5)


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the domain of the following function.

f(x) = x!


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


Find the range of the following functions given by `sqrt(16 - x^2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Let f(x) = `sqrt(1 + x^2)`, then ______.


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


Which of the following functions is NOT one-one?


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×