मराठी

Let F and G Be Two Real Functions Given by F = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and G = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)} Find the Domain of Fg. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.

उत्तर

It is given that f and g are two real functions such that

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)}

and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Now,

Domain of f = Df = {0, 2, 3, 4, 5}

Domain of g = Dg = {1, 2, 3, 4, 5}

∴ Domain of fg = Df ∩ Dg = {2, 3, 4, 5}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 18 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


Which one of the following is not a function?


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of definition of the function f(x) = log |x| is


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

e2 = 7.3890


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Prove that logbm a = `1/"m" log_"b""a"`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The domain of the function f(x) = log3+x (x2 - 1) is ______.


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×