Advertisements
Advertisements
प्रश्न
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
उत्तर
It is given that f and g are two real functions such that
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)}
and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Now,
Domain of f = Df = {0, 2, 3, 4, 5}
Domain of g = Dg = {1, 2, 3, 4, 5}
∴ Domain of fg = Df ∩ Dg = {2, 3, 4, 5}
APPEARS IN
संबंधित प्रश्न
Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(a) the image set of the domain of f
If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(ii) fg
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),
Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (f + g) (x), (f − g) (x), (fg) (x) and \[\left( \frac{f}{g} \right) \left( x \right)\] .
If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]
Write the domain and range of the function \[f\left( x \right) = \frac{x - 2}{2 - x}\] .
Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B?
Which one of the following is not a function?
If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\] is equal to
Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\] x ∈ R, then
The domain of definition of \[f\left( x \right) = \sqrt{4x - x^2}\] is
Check if the following relation is function:
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`
Express the area A of circle as a function of its diameter d
Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one
lf f(x) = 3(4x+1), find f(– 3)
Express the following exponential equation in logarithmic form
25 = 32
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
`9^(3/2)` = 27
Express the following logarithmic equation in exponential form
log10 (0.001) = −3
Write the following expression as sum or difference of logarithm
`log (sqrt(x) root(3)(y))`
Write the following expression as a single logarithm.
ln (x + 2) + ln (x − 2) − 3 ln (x + 5)
Solve for x.
log2 x + log4 x + log16 x = `21/4`
If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7
The equation logx2 16 + log2x 64 = 3 has,
Answer the following:
Identify the following relation is the function? If it is a function determine its domain and range
{(12, 1), (3, 1), (5, 2)}
Answer the following:
A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5
The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`
Write an expression for gf(x) in its simplest form
The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.
If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.
The domain of the function f(x) = log3+x (x2 - 1) is ______.
Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`
The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.
The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.