Advertisements
Advertisements
प्रश्न
The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.
विकल्प
Domain = R, Range = {–1, 1}
Domain = R – {1}, Range = R
Domain = R – {4}, Range = {– 1}
Domain = R – {– 4}, Range = {–1, 1}
उत्तर
The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by Domain = R – {4}, Range = {– 1}.
Explanation:
Given that: f(x) = `(4 - x)/(x - 4)`
We know that f(x) is defined if x – 4 ≠ 0
⇒ x ≠ 4
So, the domain of f(x) is = R – {4}
Let f(x) = y = `(4 - x)/(x - 4)`
⇒ yx – 4y = 4 – x
⇒ yx + x = 4y + 4
⇒ x(y + 1) = 4y + 4
⇒ x = `(4(1 + y))/(1 + y)`
If x is real number, then 1 + y ≠ 0
⇒ y ≠ – 1
∴ Range of f(x) = R {– 1}
APPEARS IN
संबंधित प्रश्न
Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:
(b) pre-images of 6, −3 and 5.
Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.
(b) f2 = {(1, 1), (2, 7), (3, 5)}
Let A = [p, q, r, s] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?
If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(ii) g − f
Which of the following are functions?
f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,
Check if the following relation is function:
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
Check if the relation given by the equation represents y as function of x:
x2 − y = 25
Express the area A of a square as a function of its perimeter P
Check the injectivity and surjectivity of the following function.
f : N → N given by f(x) = x2
Express the following exponential equation in logarithmic form
e2 = 7.3890
Answer the following:
Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1
Answer the following:
Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0
Answer the following:
Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`
Find the domain of the following function.
f(x) = `sqrtlog(x^2 - 6x + 6)`
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`
Calculate the value of `"gg" (1/2)`
The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.
The domain of the function f(x) = log3+x (x2 - 1) is ______.
Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`
Find the range of the following functions given by f(x) = 1 + 3 cos2x
(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)
Let f(x) = `sqrt(1 + x^2)`, then ______.
The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.
The range of the function y = `1/(2 - sin3x)` is ______.
The period of the function
f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.