हिंदी

If F ( X ) = 2 X 1 + X 2 , Show that F(Tan θ) = Sin 2θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 

उत्तर

Given:

\[f\left( x \right) = \frac{2x}{1 + x^2}\]

Thus,

\[f\left( \tan\theta \right) = \frac{2\left( \tan\theta \right)}{1 + \tan^2 \theta}\]

\[= \frac{2 \times \frac{\sin \theta}{\cos \theta}}{1 + \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)}\]

\[ = \frac{2 \sin \theta}{\cos \theta} \times \frac{\cos^2 \theta}{\cos^2 \theta + \sin^2 \theta}\]

\[ = \frac{2 \sin \theta \cos \theta}{1} \left[ \because \cos^2 \theta + \sin^2 \theta = 1 \right]\]

\[ = \sin 2\theta \left[ \because 2 \sin \theta \cos \theta = \sin 2\theta \right]\]

Hence,  f (tan θ) = sin 2θ.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 8 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find `f(1/2)`


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(m) = m2 − 3m + 1, find f(0)


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Find the domain of f(x) = log10 (x2 − 5x + 6)


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Prove that alogcb = blogca


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Find x, if x = 33log32  


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×