मराठी

If F ( X ) = 2 X 1 + X 2 , Show that F(Tan θ) = Sin 2θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 

उत्तर

Given:

\[f\left( x \right) = \frac{2x}{1 + x^2}\]

Thus,

\[f\left( \tan\theta \right) = \frac{2\left( \tan\theta \right)}{1 + \tan^2 \theta}\]

\[= \frac{2 \times \frac{\sin \theta}{\cos \theta}}{1 + \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)}\]

\[ = \frac{2 \sin \theta}{\cos \theta} \times \frac{\cos^2 \theta}{\cos^2 \theta + \sin^2 \theta}\]

\[ = \frac{2 \sin \theta \cos \theta}{1} \left[ \because \cos^2 \theta + \sin^2 \theta = 1 \right]\]

\[ = \sin 2\theta \left[ \because 2 \sin \theta \cos \theta = \sin 2\theta \right]\]

Hence,  f (tan θ) = sin 2θ.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.2 | Q 8 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

What is the fundamental difference between a relation and a function? Is every relation a function?


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Prove that logbm a = `1/"m" log_"b""a"`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


If f(x) = 5x - 3, then f-1(x) is ______ 


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×