Advertisements
Advertisements
प्रश्न
If f(x) = cos (log x), then the value of f(x2) f(y2) −
पर्याय
(a) −2
(b) −1
(c) 1/2
(d) None of these
उत्तर
(d) None of these
Given: \[f\left( x \right) = \cos\left( \log x \right)\]
\[\Rightarrow f\left( x^2 \right) = \cos\left( \log\left( x^2 \right) \right)\]
\[ \Rightarrow f\left( x^2 \right) = \cos\left( 2\log\left( x \right) \right)\]
Similarly,
\[ \Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = 2\cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[ \Rightarrow \frac{1}{2}\left[ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right] = \cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that
(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]
(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(ii) g − f
Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] .
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is
The domain of definition of the function f(x) = log |x| is
Which of the following relations are functions? If it is a function determine its domain and range:
{(1, 1), (3, 1), (5, 2)}
A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x
Check if the relation given by the equation represents y as function of x:
x2 − y = 25
Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x
Find the domain and range of the following function.
f(x) = `sqrt((x - 2)(5 - x)`
Express the following exponential equation in logarithmic form
25 = 32
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
231 = 23
Express the following exponential equation in logarithmic form
e2 = 7.3890
Solve for x.
log2 x + log4 x + log16 x = `21/4`
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
The equation logx2 16 + log2x 64 = 3 has,
Answer the following:
Identify the following relation is the function? If it is a function determine its domain and range.
{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
Answer the following:
Find whether the following function is one-one
f : R → R defined by f(x) = x2 + 5
Answer the following:
Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1
Answer the following:
If f(x) = 3x + a and f(1) = 7 find a and f(4)
Answer the following:
Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not
Answer the following:
Simplify, log (log x4) – log (log x)
Answer the following:
Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(x - 3) + 1/(log(5 - x))`
Answer the following:
Find the range of the following function.
f(x) = [x] – x
Answer the following:
Find the range of the following function.
f(x) = 1 + 2x + 4x
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
Domain of function f(x) = cos–1 6x is ______.
Find the range of the following functions given by `|x - 4|/(x - 4)`
Find the range of the following functions given by `sqrt(16 - x^2)`
Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`
If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)
Find the domain and range of the function f(x) = `1/sqrt(x - 5)`
If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.
The ratio `(2^(log_2 1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.