मराठी

If F(X) = Cos (Log X), Then the Value of F(X2) F(Y2) −1 2 { F ( X 2 Y 2 ) + F ( X 2 Y 2 ) } Is(A) −2 (B) −1 (C) 1/2 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

पर्याय

  • (a) −2

  • (b) −1

  • (c) 1/2

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

Given: \[f\left( x \right) = \cos\left( \log x \right)\]

\[\Rightarrow f\left( x^2 \right) = \cos\left( \log\left( x^2 \right) \right)\]
\[ \Rightarrow f\left( x^2 \right) = \cos\left( 2\log\left( x \right) \right)\]

Similarly,

\[f\left( y^2 \right) = \cos\left( 2\log\left( y \right) \right)\]
Now,
 
\[f\left( \frac{x^2}{y^2} \right) = \cos\left( \log\left( \frac{x^2}{y^2} \right) \right) = \cos\left( \log x^2 - \log y^2 \right)\]and
\[f\left( x^2 y^2 \right) = \cos\left( \log x^2 y^2 \right) = \cos\left( \log x^2 + \log y^2 \right)\]
\[\Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = \cos\left( \left( 2\log x - 2\log y \right) \right) + \cos\left( \left( 2\log x + 2\log y \right) \right)\]
\[ \Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = 2\cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[ \Rightarrow \frac{1}{2}\left[ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right] = \cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[\Rightarrow f\left( x^2 \right)f\left( y^2 \right) - \frac{1}{2}\left\{ f\left( x^2 y^2 \right) + f\left( \frac{x^2}{y^2} \right) \right\} = \cos\left( 2\log x \right)\cos\left( 2\log y \right) - \cos\left( 2\log x \right)\cos\left( 2\log y \right) = 0\]
 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 4 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


The domain of definition of the function f(x) = log |x| is


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

e2 = 7.3890


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


Domain of function f(x) = cos–1 6x is ______.


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by `sqrt(16 - x^2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×