मराठी

If F ( X ) = X − 1 X + 1 , Then Show that (I) F ( 1 X ) = − F ( X ) (Ii) F ( − 1 X ) = − 1 F ( X ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]

उत्तर

Given:

\[f\left( x \right) = \frac{x - 1}{x + 1}\]       .....(1) 
(i) Replacing  by
 
\[\frac{1}{x}\]  in (1), we get
 

\[f\left( \frac{1}{x} \right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1}\]

\[ = \frac{1 - x}{1 + x}\]

\[ = - \frac{x - 1}{x + 1}\]

\[ = - f\left( x \right)\]

(ii) Replacing  by

\[- \frac{1}{x}\]  in (1), we get

\[f\left( - \frac{1}{x} \right) = \frac{- \frac{1}{x} - 1}{- \frac{1}{x} + 1}\]

\[ = \frac{- 1 - x}{- 1 + x}\]

\[ = - \frac{x + 1}{x - 1}\]

\[ = - \frac{1}{\left( \frac{x - 1}{x + 1} \right)}\]

\[ = - \frac{1}{f\left( x \right)}\]

 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.2 | Q 9 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Which one of the following is not a function?


The range of f(x) = cos [x], for π/2 < x < π/2 is


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

10−2 = 0.01


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


If f(x) = 5x - 3, then f-1(x) is ______ 


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×