मराठी

The Range of F(X) = Cos [X], for π/2 < X < π/2 is (A) {−1, 1, 0} (B) {Cos 1, Cos 2, 1} (C) {Cos 1, −Cos 1, 1} (D) [−1, 1] - Mathematics

Advertisements
Advertisements

प्रश्न

The range of f(x) = cos [x], for π/2 < x < π/2 is

पर्याय

  • (a) {−1, 1, 0}

  • (b) {cos 1, cos 2, 1}

  • (c) {cos 1, −cos 1, 1}

  • (d) [−1, 1]

     
MCQ

उत्तर

(b) {cos 1, cos 2, 1}

Since, f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\]

\[- \frac{\pi}{2} < x < \frac{\pi}{2}\]
\[ \Rightarrow - 1 . 57 < x < 1 . 57\]
\[ \Rightarrow [x] \in { - 1, 0, 1, 2}\]
\[\text{ Thus } , \cos [x] = {\cos ( - 1), \cos 0, \cos1, \cos 2 }\]
\[\text{ Range of } f(x) = {\cos 1, 1, \cos 2}\]

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 7 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Which one of the following is not a function?


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If f(m) = m2 − 3m + 1, find f(0)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Prove that alogcb = blogca


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×