मराठी

If F(X) = Loge (1 − X) And G(X) = [X], Then Determine Function:(I) F + G - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 

उत्तर

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(i ) ( g ) : ( -∞, 1) → R is given by ( f + g ) (x) = (x) + g (x) = loge (1 − x) + [ x ].

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 5.1 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

e2 = 7.3890


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


The domain of the function f(x) = log3+x (x2 - 1) is ______.


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the range of the following functions given by f(x) = |x − 3|


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×