मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: If a2 + b2 = 7ab, show that, log(a+b3)=12loga+12logb - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`

बेरीज

उत्तर

a2 + b2 = 7ab

∴ a2 + b2 + 2ab = 7ab + 2ab

∴ (a + b)2 = 9ab

∴ `("a" + "b")^2/9` = ab

∴ `(("a" + "b")/3)^2` = ab

∴ `log(("a" + "b")/3)^2` = log (ab)

∴ `2log(("a" + "b")/3)` = log a + log b

∴ `log(("a" + "b")/3) = 1/2 log"a" + 1/2log"b"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (27) | पृष्ठ १३१

संबंधित प्रश्‍न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Check if the following relation is function:


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Express the area A of a square as a function of its perimeter P


Express the area A of circle as a function of its radius r


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Find the domain of f(x) = log10 (x2 − 5x + 6)


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If f(x) = 5x - 3, then f-1(x) is ______ 


The domain of the function f(x) = log3+x (x2 - 1) is ______.


Domain of function f(x) = cos–1 6x is ______.


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×