मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Simplify log10 2845-log10 35324+log10 325432-log10 1315 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`

बेरीज

उत्तर

`log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`

= `[log_10  (28/45) + log_10 (325/432)] - [log_10 (35/324) + log_10 (13/15)]`

= `log_10  (28/45 xx 325/432) - log_10  (35/324 xx 13/15)`

= `log_10 [(28/45 xx 325/432) divide (35/324 xx 13/15)]`

= `log_10 [28/45 xx 325/432 xx 324/35 xx 15/13]`

= log105.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (23) | पृष्ठ १३१

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f(x) = |x − 1|. Then,


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of the function f(x) = log |x| is


The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the following relation is a function.


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

e2 = 7.3890


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Find x, if x = 33log32  


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The domain of the function f(x) = `sqrtx` is ______.


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the range of the following functions given by `|x - 4|/(x - 4)`


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×